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Abstract

This paper presents an overview of NASA Langley's research program in formal methods.

The major goal of this work is to bring formal methods technology to a sufficiently mature

level for use by the United States aerospace industry. Towards this goal, work is under-

way to design and formally verify a fault-tolerant computing platform suitable for advanced

flight control applications. Also several direct technology transfer efforts have been initiated

that apply formal methods to critical subsystems of real aerospace computer systems. The

research team consists of six NASA civil servants and contractors from Boeing Military Air-

craft Company, Computational Logic Inc., Odyssey Research Associates, SRI International,

University of California at Davis, and Vigyan Inc.

Motivation

NASA Langley Research Center has been developing techniques for the design and validation

of flight critical systems for over two decades. Although much progress has been made in

developing methods which can accommodate physical failures, the design flaw remains a

serious problem [2, 3, 4, 5, 6, 7, 8].

A recent report by the National Center For Advanced Technologies i has identified "Prov-

ably Correct System Specification" and "Verification Formalism For Error-Free Specifica-

tion" as key areas of research for future avionics software and ultrareliable electronics systems

[9]. Aerospace engineers attending the NASA-LaRC Flight Critical Digital Systems Tech-

nology Workshop [10] listed techniques for the validation of concurrent and fault-tolerant

computer systems high on the list of research priorities for NASA.

*This is an updated version of the a paper entitled "NASA Langley's Research Program in Formal
Methods" presented at COMPASS 91 [1].

1A technical council funded by the Aerospace Industries Association of America (AIA) that represents the
major U.S. aerospace companies engaged in the research, development and manufacture of aircraft, missiles
and space systems and related propulsion, guidance, control and other equipment.
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A further motivation for the use of formal methods is the practical limitations of life-

testing methods to quantify reliability in the ultrareliable domain. Unfortunately, the quan-

tification of reliability in the presence of design faults has been found to be infeasible whether

applied to hardware or software (standard or fault-tolerant) [11]. Therefore the use of non-

statistical method is necessary.

Formal Methods

Formal methods are the applied mathematics of computer systems engineering. There are

many different types of formal methods with various degrees of rigor. The following is a

useful (first-order) taxonomy of the degrees of rigor in formal methods:

Level-I: Formal specification of all or part of the system.

Level-$: Formal specification at two or more levels of abstraction and paper and

pencil proofs that the detailed specification implies the more abstract spec-

ification. : ......

Level-3: Formal proofs checked by a mechanical theorem prover.

Level I represents the use of mathematical logic or a specification language that has a

formal semantics to specify the system. This can be done at several levels of abstraction.

For example, one level might enumerate the required abstract properties of the system,

while another level describes an implementation which is algorithmic in style: :Leve! 2 formal

methods goes beyond level 1 by developing pencil:and-paper proofs that t=he_mpre concrete

levels logically imply the more abstract-property oriented levels. Level 3 is the most rigorous

application of formal methods. Here one uses a seini-aut0matic theorem pr0ver:to make sur_

that all of the proofs are valid. The Level 3 process of convincing a mechanical prover is

really a process of developing an argument for an ultimate skeptic who must be shown every

detail.

It is also important to realize that formal methods is not an all-or-nothing approach.

The application of formal methods to the most critical portions of a system is a pragmatic

and useful strategy. Although a complete formal verification of a large complex system is

impractical at this time, a great increase in confidence in the system can be obtained by the

use of formal methods at key locations in the system.
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Research Team

The Langley formal methods program involves both in-house researchers and industrial/academic

researchers working under contract to NASA Langley. Currently the in-house team consists

of six civil servants and one in-house contractor (Vigyan Inc.). NASA Langley has awarded

three contracts specifically devoted to formal methods (from the competitive NASA RFP

1-22-9130.0238). The selected contractors were SRI International, Computational Logic

Inc., and Odyssey Research Associates. The three contracts are five-year, task assignment

contracts with total spending authority at approximately $2.5M per contract. Another

task-assignment contract with Boeing Military Aircraft Company (BMAC) is being used to
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explore formal methods as well. Through this contract BMAC is funding research at the

University of California at Davis and California Polytechnic State University to assist them

in the use of formal methods in aerospace applications.

NASA Langley's Research Strategy

The basic strategy of the research effort is to apply existing formal methods to challenging

aerospace designs. This strategy leverages the huge investment of DARPA and National

Security Agency in development of tools and concentrates on the problems specific to the

aerospace problem domain. We have sought to build a strong inhouse research program

as well as use contracts with the leading U.S. formal methods research teams (i.e. SRI,

CLI, ORA) and aerospace industrial teams (BMAC, Draper Labs). In the short term we

are seeking to apply formal methods to critical subsystems. In the medium term we are

designing and verifying a reliable computing platform. Only in the long-term will we seek to

make production-quality verification tools that are easily used by design engineers without

overly specialized, detailed knowledge of formal methods.

The design of a digital flight control system involves two dissimilar activities:

1. design and implementation of control laws

2. design of the fault-tolerant computing platform which executes the control laws

Although these design activities are intimately connected, they require uniquely different

skills. The first activity requires knowledge of feedback control theory and aerodynamics as

well as numerical methods. The second activity requires knowledge of fault-tolerance theory

and computer architecture. Although both activities are essential, we are concentrating at

this time on the second activity. To facilitate the development and demonstration of tools

and techniques to support the second activity, a reliable computing platform (RCP) is being

developed. Also, several tasks are underway to facilitate the transfer of formal methods

technology to aerospace industry.

The Reliable Computing Platform

The Reliable Computing Platform (RCP) dispatches the control-law application tasks and

executes them on redundant processors. The reliable computing platform performs the

necessary fault-tolerant functions and provides an interface to the network of sensors and

actuators.

The RCP consists of both hardwareand software components. A real-time operating sys-

tem provides the applications software developer with a reliable mechanism for dispatching

periodic tasks on a fault-tolerant computing base that appears to him as a single ultra-

reliable processor. Traditionally, an operating system has been implemented as an executive

(or main program) that invokes subroutines implementing the application tasks. Commu-

nication between the tasks has been accomplished by use of shared memory. This strategy

is effective for systems with nominal reliability requirements where a simplex processor can
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be used. For ultra-reliable systems, the additional responsibility of providing fault tolerance

makes this approach untenable.

For these reasons, the operating system and replicated computer architecture must be

designed together so they mutually support the goals of the RCP. A multi-level hierarchical

specification of the RCP is shown in figure 1.

[ Uniprocessor System Model (US}]

I
IFault-tolerantt eplicatedSynchronousModel(RS)I

I
IFault-tote,'antDistributed Synchronous Model (DS)]

I
l Fault-tolerant Distributed Asynchronous Model (o,4)J

I
I Local Ezecutive Model (LE) I

I
[ Ifardware/Software Implementation]

Figure 1: Hierarchical Specification of the Reliable Computing Platform (RCP)

The top level of the hierarchy describes the operating system as a function that sequent

tinily invokes application tasks. This view of the operating system will be referred to as the

uniprocessor specification (US}, which is formalized as astate transition system and for-rns

tiae'baS|S o_ the-spec|fi_a-tlon for the RCP. Fault tolerance is achieved by voting results com-

puted by the replicated processors operating on the same inputs. Interactive consistency

checks on sensor inputs and voting of actuator outputs require synchronization of the repli-

cated processors. The second level in the hierarchy (RS) describes the operating system as

a synchronous system where each replicated processor executes the same application tasks.

The existence of a global time base, an interactive consistency mechanism and a reliable

v0t|ng mechanism are assumed at thlsqevel. Level 3 of the hierarchy breaks a frame into

four _quential pI/_es__Tlils allows a more explicitmodeling of interprocessor communica-

tion and the time phasing of computation, communication, and voting. At the fourth level,

the assumptions of the synchronous model must be discharged. Rushby and von Henke [12]

report on the formal verification of Lamport and Melliar-Smith's [13] interactive-convergence

clock synchronization algorithm. This algorithm can serve as a foundation for the implemen-

tation of the replicated system by bounding the amount of asynchrony in the system so that

it can duplicate the functionality of the DS model. Dedicated hardware implementations of

the clock synchronization function are a long-term goal. The LE model is currently under

development. This model describes the actions on each local processor delineating how each

processor schedules tasks, votes results and rewrites its own local memory with voted val-

ues. Of primary importance in this specification is the utilization of a memory management
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unit by the local executive in order to prevent the overwriting of incorrect memory loca-

tions while recovering from the effects of a transient fault. There will probably be another

level of specification introduced before the final implementation in hardware and software is

reached. The research activity will culminate in a detailed design and prototype implemen-

tation. Figure 2 depicts the generic hardware architecture assumed for implementing the

replicated system. Single-source sensor inputs are distributed by special purpose hardware

executing a Byzantine agreement algorithm. Replicated actuator outputs are all delivered

in parallel to the actuators, where force-sum voting occurs. Interprocessor communication

links allow replicated processors to exchange and vote on the results of task computations.

As previously suggested, clock synchronization hardware may be added to the architecture

as well.

The hardware architecture is a classic N-modular redundant (NMR) system with a small

number N of processors. Single-source sensor inputs are distributed by special purpose

hardware executing a Byzantine agreement algorithm. Replicated actuator outputs are all

delivered in parallel to the actuators, where force-sum voting occurs. Interprocessor com-

munication links allow replicated processors to exchange and vote on the results of task

computations. This is illustrated in figure 2.
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Figure 2: Generic hardware architecture.

The Division of Labor

The in-house team at NASA has been orchestrating the effort to apply formal methods to

the RCP. The design problem has been decomposed into several separate activities, some of
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which are being investigated by contractual teams and others by the in-house team.
efforts are roughly divided as follows:

in-house:

SRI:

CLI:
ORA:

BMAC:

system architecture, clock synchronization

Clock synchronization, fault-tolerance

Byzantine Agreement Circuits, clock synchronization

Byzantine Agreement Circuits, applications

Hardware Verification, formal requirements analysis

The

NASA In-house Work

The in-house team has concentrated on the system architecture for the RCP. The top two

levels of the RCP were originally formally specified in standard mathematical notation and

connected via mathematical (i.e. level 2 formal methods) proof[14, 15]. Under the assump-

tion that a majority of processors are working in each frame, the proof establishes that the

replicated system computes the same results as a single processor system not subject to fail-

ures. Sufficient conditions were developed that guarantee that the replicated system recovers
from transient faults within a bounded amount of time. SRI subsequently generalized the

models and constructed a mechanical proof in Ehdm [16]. Next, the NASA inhouse team

developed the third and fourth level models. Tile top two levels and the two new models

were then specified in Ehdm and all of the proofs were done mechanically using the Ehdm

5.2 prover[17,18] _- _ _ .... _ = _ _

Inhouse work is underway to design an d implemen t a fault-tolerant clock synchronization
circuit capable of recovery from transient faults [19, 20]. The circuit is being implemented

using programmable logic devices (PLDs) and FOXI fiber optic communications chips [21].

Contractual Efforts

SRI International

The redundancy management strategies of virtually all fault-tolerant systems depend upon

some form of voting which in turn depends upon synchronization. Although in many systems

the clock synchronization function has not been decoupled from the applications (e.g. the

redundant versions of the applications Synchronize by messages), research and experience

have led us to believe that solving the synchronization problem independently from the ap-

plications design can provide significant simplification of the system [22, 23]. The operating

system is built on top of this clock-synchronization foundation. Of course, the correctness

of this foundation is essential. Thus, the clock synchronization algorithm and its implemen-

tation are prime candidates for formal methods. The verification strategy shown in figure 3

is being explored. The top-level in the hierarchy is an abstract property of the form:

V non-faulty p,q: IC/,p(t) - Cq(t)l < 6

where $ is the maximum clock skew guaranteed by the algorithm as long as a sufficient

number of clocks (and the processors they are attachcd to) are working. The function Cp(t)
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[Maximum Clock Skew Property I

T
I

I Synchronization Algorithm I

T
I

[Digital Circuit Implementation]

Figure 3: Hierarchical Verification of Clock Synchronization

gives the value of clock p at real time t. The middle level in the hierarchy is a mathematical

definition of the synchronization algorithm. The bottom level is a detailed digital design of

a circuit that implements the algorithm. The bottom level is sufficiently detailed to make

translation into silicon straight forward.

The verification process involves two important steps: (1) verification that the algorithm

satisfies the maximum skew property and (2) verification that the digital circuitry correctly

implements the algorithm. The first step has already been completed by SRI International.

The first such proof was accomplished during the design and verification of SIFT [13]. The

proof was done by hand in the style of most journal proofs. More recently this proof step

has been mechanically verified using the Ehdrn theorem prover [12]. In addition, SRI has

mechanically verified Schneider's clock synchronization paradigm [24] using Ehdm[25]. A

further generalization was found at NASA Langley [20] 2. The design of a digital circuit to

distribute clock values in support of fault-tolerant synchronization has been completed by

SRI International and is currently being formally verified?

SRI is currently writing a chapter for the FAA Digital Systems Validation Handbook

Volume III on formal methods[26]. The handbook provides detailed information about digital

system design and validation and is used by the FAA certifiers.

Computational Logic Inc.

Fault-tolerant systems, although internally redundant, must deal with single-source informa-

tion from the external world. For example, a flight control system is built around the notion

of feedback from physical sensors such as accelerometers, position sensors, pressure sensors,

etc. Although these can be replicated (and they usually are), the replicates do not produce

identical results. In order to use bit-by-bit majority voting all of the computational repli-

cates must operate on identical input data. Thus, the sensor values (the complete redundant

suite) must be distributed to each processor in a manner which guarantees that all working

processors receive exactly the same value even in the presence of some faulty processors.

This is the classic Byzantine Generals problem [27]. CLI is investigating the formal verifica-

2The bounded delay assumption was Shown to follow from the other assumptions of the theory.

3Uniike the NASA inl_0U-seclreuit, the SRI intent is that the convergence algorithm be implemented in

software.
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tion of such algorithms and their implementation. They have formally verified the original

Marshall, Shostak, and Lamport version of this algorithm using the Boyer Moore theorem

prover [28]. They have also implemented this algorithm down to the register-transfer level

and demonstrated that it implements the mathematical algorithm [29] and then subsequently

verified the design down to a hardware description language (HDL) developed at CLI [30].

CLI has reproduced the SRI verification of the interactive convergence algorithm using the

Boyer-Moore theorem prover [31]. CLI has also developed a formal model of asynchronous

communication and demonstrated its utility by formally verifying a widely used protocol for

asynchronous communication called the bi-pha._e mark protocol, also known as "Bi-_-M,"

"FM" or "single density" [32]. It is one of several protocols implemented by microcontrollers

such as the Intel 82530 and is used in the Intel 82C501AD Ethernet Serial Interface.

Odyssey Research Associates

ORA has also been investigating the formal verification of Byzantine Generals algorithms.

They have focused on the practical implementation of a Byzantlne-resilient communications

mechanism between Mini-Cayuga micro-processors [33, 34, 35]. The Mini-Cayuga is a small

but formally verified microprocessor developed by ORA. It is a research prototype and

has not been fabricated. The communications circuitry would Serve as a foundation for __

fault-tolerant architecture. It was designed assuming that the underlying processors were

synchronized (say by a clock synchronization circuit). The issues involved with connecting-

the Byzantine communications circuit with a clock synchronization circuit and verifying the

combination has not yet been explored.

Another task that has been started with ORA is to apply their Ada verification tools to

aerospace applications. This effort consists of two subtasks. The first subtask is to verify

some utility routines obtained from the NASA Goddard Space Flight Center and theNASA-

Lewis Research Center using their Ada Verification Tool named Penelope [36]. This subtask

was accomplished in two steps: (1) a formal specification of the routines and (2) formal-

verification of the routines. Both steps uncovered errors in the routines [37]. The second

subtask was to formally specify the mode-control panel logic of a Boeing-737 experimental

aircraft system using Larch (the specification language used by Penelope) [38].

A joint project between ORA and Charles Stark Draper Laboratory (CSDL) has been

initiated. The CSDL has been funded by NASA Langley to build fault-tolerant computer

systems for over two decades. They have recently become interested in the use of formal

methods to increase confidence in their designs. ORA has formally specified an important

circuit (called the scoreboard) of the Fault-Tolerant Parallel Processor (FTPP) [39] in Cal-

iban [40]. Work is currently underway to formally verify the circuit.

|
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Boeing Military Aircraft Co.

The Boeing Company has been sponsored by NASA Langley to develop advanced validation

and verification techniques for fly-by-wire systems. As part of the project, Boeing is exploring

the use of formal methods. The goal of this work is two-fold: 1) technology transfer of formal

methods to Boeing, and 2) assessment of formal methods technology maturity.
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NASA Langley has been involved in a cooperative research partnership with Boeing to

facilitate the acceptance and adoption of this high-risk, high-payoff technology by Boeing.

The first step was to demonstrate that formal verification of "real" hardware devices is, in

fact, feasible. The first Boeing tasks concentrated on applying the HOL hardware verification

methodology to a set of hardware devices. With the assistance of a subcontract with U. C.

Davis, Boeing verified a set of hardware devices, including a microprocessor[41], a floating-

point coprocessor similar to the Inte18087 but smaller[42, 43], a direct memory access (DMA)

controller similar to the Intel 8237A but smaller[44], and a set of memory-management

units[45, 46]. U. C. Davis also developed the generic-interpreter theory to aid in the formal

specification and verification of hardware devices[47, 48, 49], and a horizontal-integration

theory for composing verified devices into a system[50, 51, 52, 53].

After demonstrating the feasibility of verifying standard hardware devices, Boeing was

ready to apply the methodology to a set of proprietary hardware devices being developed

inhouse for use in a number of aeronautics and space applications. NASA sponsored a Boeing

engineer to work with the Processor Interface Unit (PIU) design team to formally specify

and verify the device. Although the NASA contract with Boeing will end in FY93, Boeing

has already capitalized on the NASA program and has started their own IR&D effort to

continue applying formal methods to the set of devices.

The cooperative research effort with Boeing has helped NASA Langley to assess the

maturity of formal methods technology with respect to state-of-the-practice digital fiight-

control systems. First, Boeing was tasked to analyze the suitability of the VIPER chip for

application to digital flight controls and to assess the design/verification methodology used

on the VIPER[54] 4. The generic-interpreter and horizontal-integration theories developed at

U. C. Davis provide models to guide the specification and verification of hardware devices.

Application of formal methods to the PIU has demonstrated that formal methods can be

practically applied to the digital hardware devices being developed by Boeing today and has

given NASA insight on how to make the process more cost effective.

Work is also progressing on a methodology for formal requirements analysis for aircraft

systems[58, 59]. This work, being performed under a subcontract to California Polytechnic

State University, includes development of a Wide-Spectrum Requirements Specification Lan-

guage (WSRSL) and prototype tools to support the language. A set of requirements for an

Advanced Subsonic Civil Transport (ASCT) developed by a Boeing engineer under previous

NASA funding is being rewritten in WSRSL to demonstrate the use of the language and

toolset. Since WSRSL is a formal language, the specification can be formally analyzed for

syntactic correctness, completeness, and consistency. NASA Langley is currently evaluat-

ing WSRSL as a candidate requirements specification tool for the fly-by-light/power-by-wire

project. Future plans include possible development of an automatic translator to Ehdm (SRI

International's theorem prover) to facilitate verification of functional correctness as well.

4NASA Langley has just completed a 3 year Memorandum of Understanding (MOU) with the U.K.
Royal Signals and Radar Establishment (RSRE) in formal methods. The MOU focused on the VIPER
microprocessor and the verification methodology used in its development. Computational Logic Inc. and
Langley inhouse researchers also performed assessments of the VIPER project[55, 56, 57].
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NASA FM Repository

An anonymous FTP account has been set up at Langley to make the research results readily

available. Formal specifications, research papers, and other useful information will be stored

in machine-readable form. To access this repository, one must issue the following command:

"ftp air16.1arc,nasa.gov'. One then supplies "anonymous" as the user name and his FTP

address a_ the password.

==,

Summary

Although the NASA program covers a wide-spectrum 0f theoretical and practical problem

domains, it is strongly focused on the goal of designing a fault-tolerant reliable computing

base which can support real-time control applications. Much progress has already been made

in applying formal methods tO Criiical subsystems such as Clock synchronization, Byzantine

agreement, voting, etc. The challenge ahead is to integrate all of these activities to accom-

plish a complete verification of the total RCP system and to continue the transfer of this

technology to the aerospace industry.
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NASA Langley Research Center

23



WELCOME
AND

INTRODUCTION

FORMAL METHODS WORKSHOP

NASA LANGLEY RESEARCH CENTER

AUGUST 11-13, 1992

Charles W. Meissner, Jr.

NASA Langley Research Center

k
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VERTICAL CUT TO SVMB

CODE A INASA ADMINISTRATOR

ii =k

OFFICE OF
AERONAUTICS AND SPACE

TECHNOLOGY._,

LANGLEY I
RESEARCH I

CENTER J

FLIGHT I
SYSTEMS

DIRECTORATE

I SYSTEM Ill
I VALIDATION II
I METHODS g
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LANGLEY FAULT-TOLERANT DIGITAL SYSTEMS
HISTORICAL PERSPECTIVE

CA. 1972 ARCS

CARSRA

SIFT

FTMP

CARE III

LIC SOFTWARE

IAPSA

SURE/ASSIST

CA. 1992 AIPS

L

F'T SYSTEM DESIGN

RELIABILITY ANALYSIS

F-T COMPUTER

F-T COMPUTER

RELIABILITY

S/W ERROR ANALYSIS

F-T DFCS DESIGN

RELIABILITY ANALYSIS

DISTRIBUTED F-T SYSTEM

ULTRARELIABLE DIGITAL 'AVIONICS

CONTROL SYSTEMS BECOMING THE PRACTICAL EQUIVALENT OF PRIMARY
STRUCTURE

• U.S. FAR 1309-1 Requires P(fail)<10 -9for statistical compliance

• Reliability can't be estimated to this level

• Experienced engineering and operational judgement used for compliance

FAULT-TOLERANT DIGITAL SYSTEMS ARE NECESSARY FOR PRACTICAL
REALIZATION OF ADVANCED CONTROL

• Analog functionality insufficient for advanced control

• Analog too high in size, weight, power

• Digital system components not adequately reliable - use redundancy to
Increase rellablllty
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FORMAL METHODS FOR
FLIGHT-CRITICAL SYSTEMS

• The only sclentificaliy satisfactory approach to aspects of the
digital validation process is through reasoning

Formal methods may become Important sooner than is
commonly supposed in the aerospace community

T T
=

SVMB has put an emphasis on formal methods

. Industry/FAA focus is essential feature of our formal methods
work- -

t

=

!
!

t

|
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Why Formal Methods?

Ricky Butler
System Validation Methods Branch

NASA Langley Research Center
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Design Sp

Tutorial

ecification Techniques

Ben DiVito
ViGYAN
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Code

Tutorial

Verification Techniques

C. Michael Holloway
Syst,(_m Validation Methods Branch

NASA L_mgley Research Center
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The FAA DFCS Handbook

Formal Methods Chapter

John Rushby
SRI Int(u'mttiona.1
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Survey of State-of-Practice

Formal Methods in Industry

Dan Craigan
ORA Canada
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Overview of Presentation

Survey of State-of-Practice:

Formal Methods in Industry

I Purpose, sponsors and researchers.

• Method for conducting survey.

Dan Craigen

ORA Canada

dan(_ora.on.ca

NASA Langley, Virginia

11 August 1992

• Cases: An overview.

• Example case: TCAS.

• Example feature: Tools.

• Observations.

Purpose, sponsors and researchers

• To provide an authoritative record on the prac-

tical experience to date.

• To better inform industry and government

bodies developing standards and regulations.

• To provide pointers to future research and

technology transfer needs.

• Value added: Case studies and analysis.

Purpose, sponsors and researchers

• AECB, NIST, NRL.

• Dan Craigen, Susan Gerhart, Ted Ralston.
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Method for Conducting Survey Process

• Initial questionnaire,

• Literature review.

• Structured interviews (Second questionnaire).

• Raw notes, case report, review.

• Review committee.

Method for Conducting Survey

Questionnaires

• Initial questionnaire and structured interview

• Organizational context.

• Project content and history.

• Application goals.

• Formal metl_ods factors.

• Formal methods and tool usage.

• Results.

Method for Conducting Survey

Analytic framework

• Product features.

• Process features.

• FM R&D summary.

• Key events and timing.

Method for Conducting Survey

Product Features

• Client satisfaction.

• Cost.

• Impact of product.

• Quality.

• Time-to-market.
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Method for Conducting Survey

Method for Conducting Survey
Process Features

Process Features • Design.

• Cost. • Developing reusable components.

• Impact of process.

• Pedagogical.

• Tools.

• Using existing reusable components.

• Maintainability.

• Requirements capture.

• V&V.

10

Method for Conducting Survey

FM R_D Summary

• Methods: specification; design and implemen-

tation; validation and verification. [uses]

Method for Conducting Survey

Key Events and Timing

• Starter.

• Tools: language processors; automated rea-

soning; other tools. [tools]

• Recommendations to FM community. [needs]

• Booster.

• Status.

11

64
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Case's: AH Ovo0vi_'w

• CASE

- SSADM toolset; commerci,,l; Z.

- 340pgs Z/English; 550 scl_emas;

37KLOC obj. C; 16.5 lines/day

• CICS

- Transaction processing; commercial; Z;

PS/2 tools.

268KLOC new/modified code;

50KLOC traced to Z sl)ec_;

9% improvement in cost;

60% reduction ill APARS.

13

Cases: An uvervlew

• Cle;lllrOOll_

COBOl_ structuring and Attitude control;

conlmercial and government;

functional specs, and testing. [Method]

- 80KLOC; (20KLOC reused; 18KLOC

cllanged; 34KLOC new)

- 34 lines/day; error rate of 3.4/KLOC

(I/20tll industry average).

• Darlington

- Shutdown system; regulatory; A-7 style and

program function tables.

-SDSI 1362LOC Fortran; I185LOC As-

sembler

SDS2: ]3KLOC Pascal (??).

14

Cases: An Overview Cases: An Overview

• LaCoS

- Engine management and a distributed con-

troller; ESPRIT and commercial;

Raise [Method].

• Multinet Gateway

- Network security; NCSC; GVE, etc.

-- 10pgs math; 80pgs Gypsy; 6KLOC OS.

• I-BACS

- Smartcard security application; security; FDM.

-- 300 lines of FDM; 25001ines of C.

• Tektronix (oscilloscope)

- Reusable software architecture; commercial;

Z; Fuzz.

- 200KLOC of code; 15pgs of Z specs (twice).

• SACEM

-Automatic train protection system; safety

critical and RER; B, Hoare triples; B tool.

- 9KLOC verified code; Total of 315,000 per-

son hours.

15

65

• TCAS

- CAS Logic and surveillance; regulatory; state

charts with DNF tables.

-?KLOC of pseudocode; specs about the

same size.

16



Cases: An Overview

• Transputer

-T-800 FPU, VCP; commercial; Z, HOL,

mathematics.

-- FPU: 100pgs Z; 4KLOC Occam; VCP about

106 states.

Example case: TCAS

• Traffic Alert and Collision Avoidance System.

• TCAS I, II, III.

• Congressional fiat (1993).

• HP-A[B

- real-time data-base; commercial; HP-SL.

- 55pgs HP-SL; 1290 lines of spec and design;

4390 lines of code.

• Grand Canyon collision.

• Time span from early 80s.

1990.

Leveson in June

17

TCAS-

• Playersi RTCA Inc. (SC 147), FAA, UC lrvine,

Mitre, Lincoln Labs.

• Interview profile: Leveson, Nivert, Lubkowski,

White.

• CAS Logic and surveiilance system.

• 7 KLOC pseudocode.

• 700 pages English description. [Terminated]

• Loss of intellectual control.

19
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TCAS

• FM for safety analysis.

automated deduction] _

{model checking and

• Statecharts.

• DNF tables for conditions.

• iteration on notation.

• Strong support from SC 14Tand industry.

• Currently at IV&V [15 pys over 8 months].
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Product real ures

Client satisfacticm t

Cost n/a

Impact of product n/a
Quality n/a

Time to markel II/LI

General process fe_ltures

Cost n/a

Impact of process -t-

Pedagogical +
Tools n/a

Specific process features

Design +
Developing r. comp. n/a

Reusing r. comp. n/a
Maintainability Ilia

Reqts. capture +
Vc_.V n/Li

TCAS (Key Events)

• Slarter: FAA seeking better rqts. for deployed

and troublesome system; Leveson looking for

demo project.

• Booster: SC 147 willing to accept new ap-

proach; Readable notation.

[

• Status: CAS Logic formalism and pseudocode

in IVY. Surveillance logic current.

31
22

TCAS (R&D)

TEAS (R&D)
• Tools: LaTeX.

• Uses: Mod. to Statecharts

- Concurrency as parallel slate machines.

- -l-abular notation.

- Specs. reviewable and IV&V.

- CAS Logic from pseudocode and Englisll.

• Needs:

-- Safety analysis tool.

- Automated deduction and model checking.

-- Well-formedness checker.

-- Foundational issues.

• Conclusions: successful transition and applica-

tion.

23
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Tools (Usage) Tools (Usage)

• CASE (SSADM): Prototype Z parser and type-

checker.

• CICS: PS/2 based toolsuite w/ editor, type-

checker, semantic analyser (Z).

• Cleanroom: Editors, waste paper basket.

• SACEM: B.

• TBACS: FDM, scrolling, pencil and paper X-

ref.

• Tektronix: Fuzz editor, typechecker and pretty

printer.

• Darlington: Microsoft Excel.
• TEAS: LaTeX.

• LaCoS: Raise toolset.
• Transputer: Occam transformation system, in-

house refinement checker.

• Multinet: GVE, Extractor.
• HP: HP-SL syntax checker.

25 26

TOOLS (Needs)

• CASE (SSADM)" schema expander, enhanced

editor, browsing and X-ref. TOOLS (Needs)

• CICS: schema expander, semantic analyzer (for

all Z), configuration management.

• Cleanroom: Extracting and tracking verifica-

tion events.

• Darlington: automated deduction, PoG, book-

keeping.

• LaCoS: Experience with automated reasoning

tools.

27
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• Multinet: Better automated deduction, improve-

ments for industrial scale, soundness, better

notation. _

• SACEM' Better integration with other V&V.

• TBACS: Better interface; large expressiOns and

many proof steps.

28



Tools (Analysis)

TOolS (Needs)

• Tektronix: schema expander, refinement proof

tool, pre-condition calculator.

• TCAS: safety analysis tool, automated deduc-

tion, language checker, sounclness.

Did tile formal methods tools help or

hinder the development of the product?

Were the tools reliable?

CA CI CL DA LA MG SA TB TE TC TR HP

- + 0 n/a 0 0 + + - n/a + 0

• Not a large role (lack of tool support).

• Transputer: refinement cl_ecker forlarge state

spaces.

• HP: Language checker and belier notation (not

ambitious! ).

• Problems due to newness and primitiveness.

• Need for language clleckers, bookkeeping.

• Don't be too ambitious.

29

• Automated deduction in critical applications.

30

Observations

Features:

• Definite positive influence on design, require-

merits, V&V, and pedagogical.

• Positive influence on 'in]pact on process' and

quality.

• Neutral on COSt.

Observations

Formal methods

• Metllods: state machine; 1st-order predicate

calculus; reviewability; complete refinement.

• Tools: Language processors; bookkeeping;

browsing; x-ref.

• Needs: Integration with other V&V; concur-

rency and timing; lower barriers of entry.

31
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Availability of Report

• Availability within 2-3 months.

• Send email to dan(_ora.on.ca, or mail to:

Dan Craigen
ORA Canada

265 Carling Avenue, Suite 506
Ottawa, Ontario K1S 2El

Canada

33
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Formal Modelisation

Susan Gerhart
National Science Foundation
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Modelisation
Sure you've proved it correct,

but what does the system REALLY do?

Susan L. Gerhart

sgerhart@nsf.gov

Subjects:

The SACEM Case

(continued from Dan Craigen's presentation)--

how FM was embedded in an industrial process

Issues of "modelisation"

Software Engineering for a
"Formal Methodist"

Requirements .................. M_ema[_ _1 of the system U_t alk)ws
property exptoratmn

•,_oecirlca_n .................... "the system" expressed m m3thum.alcal
notalions

Design ................................. Operaf_0n decomposilio_s and dala
refinements

In_IplemenfallO,It ........... Code • Asse_ons • Assumpuons

Validation ........................ Spec, Execution or _ools of prop_rt=es

Vet;rcalLk)n .................... IdenlilicallOdl and discharge Of cur reclnos,s

obligations

Documenta_ ................ Prose and dcagrams thai go wilh the
mathematical nofalioe]

Life Cycle .......................... Gel the spocifi¢,,3tiOn righl and agreed upon

Background Point of View

SACEM:
Train control for the Paris Metro

The Job,"

Shorten the irain intervals to 2 minutes to avoid a new Paris line

nd
_nvince me Pa;=s Transi! Authonly the system was safe

_J_ up an internalional business in safe train conlJ'Of systems

Who."

GEC_'Matra/CSEE + Parts Tran=t Aulho¢-ily

The Process:

I _ ............................ _ had to go with new soltwale and
hardware

Explored fault loierance, discovered woof el correclness led'=niqoes.
did safely studies

1_ ................................I;_ilt prototypes.
verified code one w_y,

found new way 10 sperry and vellly.
worked w_th authorlt;ss to demonstrale safety,

brought on-line

I_ ......................... ¢k_monsltated capability on Othetr systen_l.
commorciaJizing tools used in the p_

The Results:

Vur,ficdl_on was clem_nstrated as an eddilion [o simulation, without

excess cosl ar_ with s_J,'lificant added assurance

Spec¢ficat,Dn dnd mc-defisalio_l malured and an ir_lustrial process
was defined

SACEM System

Salely Cunts

Tram "A" TFa_ _8"

!

ChaJienge$:

• Different kinds ol *roing stock" to deloct,

some protected and some no!

• VariatK)ns in track-beae(_ lechnofogy, tunnels & m/ors.

• Gelling the train "home" when it's system does lail

• Encoded si_e procsssa¢ (rather than complex synchmnzz_,<l
multi-processor) -- as fad.sa/e as possible
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SACEM lessons for Formal Methods

An industrial process has been put in "place that is evolving
toward

UIKJerslOOdand documsnled

Me:=sumd and luedictable

Regarded as cost _tloctive

Tool sul)portud

Probably comparable Io MoO 0055

Many lechniques can play together,
(although not in concert yet)

SADT I_ gsaphical syslem decomposition and analysis

FSM (Gtaf_.,_) s_ulatoq

Hazard a_alysis

Gperat_nal sc_nartol (SO0 o_ tt_m)

ReaJ tkne dasign sl_tutalio_1

ProlOly_ system

Code venflcalion & specification roii.emenl

Technology Transfer problems could be overcome

A m_nager umJefslood _nd SluCk wdh it

The coslomor was educoled (and did lhtHr own lh_g)

Proving could bu cred_y comprom_sod

MOCJutis;JIiOflW_l It'Jip _;yl_t|leSlzetheir Io_,.;ulIs

SACEM Background

maintained spe¢ outermost guided by dew
vwv refined down vVW

until too detaded

until too sophislcated

maintained code innermost Iollowl_Cjho;_dors, not

Total: 315,000 hours (V&V = 1.5 x Development)

formal prool 32 4%

module lus_'tg 20 I%

funciiona! testing 25 9%

re-specification 2t 6%

Vslldsflon Ellort

/J_lla_3Ja_Nu_ of p_ocoduras proven |(xmaUy: ! ! ! 2 !

Nun_ of procedures oov_ed in so,. global t_ts !20 33

Number ol p_ocodures teslc,_clsomf g/oba_ 79 67

IN=,._,_,p_.d.,ost,.t_ _y ....... tO. t67

Modellsatlon

The process ol gelting all the stakeholders to understand

and agree that the working description conveys the
intended system. Subsumes requirements analysis,
mathematical modeling, etc.

In SACEM,

TrKJuk ItainS. beacordl, encoded mpmc, .

Salely pnnc_es

The description nolalK)n ilseN

The OfOCeSSOI using the doSr_iptlon

Problems encountered with modelisatton in SACEM:

L_c_'_oue code des_,ll_k)n di_Iconnocled tro_n 3h_ Iheo_em"

Co_Jn'ency _ficu_t Io e_l_'eu in to_ tov_ n_d_

Ddf_anl reptesunlabo,ls, dilletent ana/ysas wa,'o used for
assurance (roe _okJ IL_)

MlUly kiNdS ol system vlewl: c_ti_o_r, rmhv W sv_lch41tg.
mlcrowocussor developer,i_mal vurfl|o_

Relmemunts were OK. bul mute was a code gap [now
generated)

Carry-over from Requirements
Analysis

Given a language and tools, how do you express the
requirements and mode/the system 9

Translate English and diagrams to sets, logic, etc
and translate back and forth, but

how do you reed and civ,_..kmuse?

what diagrammatic tech_KlUeS maWn FMs?

CORE, JSD, GIST, SADT etc provide:

sla_;_ard lyslem topresenlal_ons

ways Io get ddle_l v_,uwl:_r;_s

domain modeqng tech#dques

Software process modeling offers:

Guidelines _ use

_S|S lot"do_ ¢olktctlOqal_ UVOIIIu_I rtt_ltlCs

Oppo_unllios Io_ IITIUCfJIUII4JI_I, U 0 with I_L,III_

IBa._Capf>oar0_lca Ot /llLIri;.Igll,.Ibillly

73



Modelisation Process

identification

Enulie$

Constraints among enUlies

Operations arzd their parameters

Representation

Enb_es become values of a type

Types must be defined to co_strucl, modify, and examine their
CODteNIS

Repzesenlat_on issues are conzzdered, e O. orde[i_l, du_Zk_,
ptirmtNe types, alfnOu]es

Acld+tional properties of the data types Item requirements

Operations defined with their parameters

Restnctloes _e expressed as preconditions

I1$ effects &re defme_ in terms of p&ramele," values bef_e
afl_ execul_n

Syslem inv&rianls are formulated from pro_B_de$ _ the $_em
iS requ_ed c_ expecled to have

Im/&r_ants are proved by ir_ectJon;

(And a collection o/definitions is built up)

SACEM Case

"Complete" application of form a|method_

Shows us potential for integration of FM into broader

system engineering

Displays interaction of problem domain and formalization

Modelisation

Process aspecf to add toFMs as languages & tools

Integration of standard computer science with application
domains ...................

Challenge to FM Vendors:

write down your process model
and

show how modefisat_n Fs peit-On'hed

74

The limitations of the model are identified, e.g.

Omitted opmations = data delads

Irnp&_t derm+tion5

Aesump_0n$ about ine op&razmg errv=ronrnent
(system and users)

D_gtee el co,"K:urrency expressed

Reliat3_li_f of comnl+JniCallOn medal

Performance, rerv01,_'¢_, and ,_ requlzsmenls thai musl be

met by the imptementslton

A plan for using the model is developed, e.g+

Id_NJfyin_ the ri_iesl Of leasI UflCk)t_OOd _ lot+ fL_rther
anak/sls or refinen_nl

lintel1 IOward more exlensNe mod_$

Formal l;_of _ propert_s of the

Val_atfon. eg.

Prololyp_ Irom Ihe model

RevteW$, inspections+ and other peer analyses

AnlmaUon of the mode++

_&rlarlos IO sli_ulale response Item cesrorrlors



Formal Methods Technology

Into FTPP

Rick Harper
Charles Stark Draper Labs

Insertion

75



Formal Methods Technology
Insertion

into

The Fault Tolerant Parallel
Processor

presented at the

Second NASA Langley Formal Methods
Workshop

11-13 August 1992

presented by

Rick Harper
Advanced Computer Architectures Group
The Charles Stark Draper Laboratory, Inc.

Cambridge, MA 02139

NASA Folmal Uelhod S Workshop _-13 Augul4 I_J2 NASA rorn'dl Methods Wofksh_O ! 1-13 A_;lusf 11)92

Forma[Methods Technology
Insertion into the FTPP

Objective:

Use formal specification and verification of

critical FTPP hardware and so,ware

compoPi-_nts to reduce the Incidence of

com-mor_-m0de failuresdue 1o specification

and implementation errors

Formal methods do not help avoid many sources
of common-mode failures

environmentally-induced faults: EMI,

radiation, heat, water, corrosives, sand (!)

Formal methods are not the only solution to

common-mode fault avoidance, removal, and
tolerance

Mature components, standards c0mpllance,

design automatio_ooTs, ruthless per-'_ecution

of complexity, conservative design practices,

simulation, testing, various CMF
deiec lion/re covery-mec/lanls-m s
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Fault Tolerant Parallei Processor

High-throughput high-rellabiiity/availability

computer for hard real-time applications

Uses many Processing Elements (PEs) in
= =

paraltel for high throughput

Uses redundant PEs for high reliability

Tolerates erbi|rary failure manl3eslatioils

(" Byzantine Resilient';)

Designed primarily to tolerate uncorrelated
hardware fauiis

Programmed in Ada



Fault Tolerant Parallel Processor
(,FTPP}

Can trade throughput (parallelism) for

reliability (redundancy) in real-time

Can be dynamically reconflgured to optimize

mission reliability end availability

Supports mixed simplex, triplex, and

quadruplex rodundancy

Allows heterogeneous processing resources

Parallelism _ transparent to programmer

Fault tolerance _ trantparent to programmer

Current FTPP Applications

"The Army Fault Tolerant Architecture (AFTA)

Program"

Funded by: Army Electronics Integration

Direclorate / NASA

Application: Helicopter TF/'rA/NOE/FCS

"Heterogeneous FTPP"

Funded by: Army Strategic Defense
Command

Application: Battle Management

"Fault Tolerant IMU Processor"

Funded by: s commercial aerospace company

Application: IMU processing

"N_"A Forn_ll Methods Workshop 11-13 August lffi)2 [ N-_-C_A"Fomtll Mothodi Workshop I I- 13 Augu'_'_ 9-9:_ 6

Cluster 3 (C3) FTPP

Third-generation FTPP

Processing Elements

Support 3 to 40 PEs per clusler

680x0sf 80960s, MIPS R3000s, i860s, or
DSP32C signal processors

Network Elements

100 Mbit/sec fiber optic interchannel links

facilitate fault conlalnment and physical
dispersion

Standard bus interface to Processing
Elements

Software

XDAdeTM-based operating system with
CSDL extensions

FTPP C3 Architecture

NAIA F0emld Melho(Jl WorilhOp 11-13 Augull 91_ •
NASA F_'ra¢ _! Wor s_o# f 1-13 AU_lUOl t992
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Layered View of FTPP Components of FTPP Suitable for
Formal Methods Insertion

Processing Elemenl

Network Element

FCR Backplane Bus

VG Synchronization Software

Task Scheduling Soffware

Intar-VG Communication Software

FDIR Software

}_]_SA Fo_al_h-_'mp 1!-t3 August 1B92 g Formal Mlthodll Work shop 11-13 Au_t 1_2

Processing Element

Formally specified / verified mlcrop_0cessor can

be used in FTPP

Processors inter_ace to _PP over Standard bus

(e.g., VMEbus) , : : :_: : _._

Not all processors in FTPP need be formally-:

verified

Could use small number of formally verified

processors to form quad or triplex Byzantine

resilient core VG which runs e simple verified
kernel

Core VG responsible for mo_llt,_dng other

VGs (including CMFs) and resetting offenders

Using vo__=_t _apabUfly-or_lE ......

- Throughpul O! core_fG-not_rSsue...c-an get

desired throughput adding higher-throughpui

VGs in a heterogeneous parallel processing

All VGs communicafe-us[n_BRVC: ::

78

Network Element

Executes performanc e-critJca_Byza_tln_ ::: ..... :

resilience algorithms ....... _ _ :

Provides BRVC abstraction :::

Generates vote, FT_C._ltnk. and other syndromes

All components execute specifiable and verifiable

algorilhms

Bus interface

Voter / syndrome accumulafor

FTC

Global Conlroiler

Scoreboard

Substantla i body of related work from formal
methods community Is relevant to these functions

_J_r,_J_ F_rmd I_thod_ WCZfk/lllOp t-1_-1_=_92 12 "

!

=

=
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Network Element Architecture FCR Backplane Bus

Backplane bus used for PE-NE communication

NE partitioned Into bus-dependent and bus-

Independenl sections

Can relrolit NE to formally specified/verified

backplane bus by modifying bus-dependent

section

Formal model of backplane bus needed

Backplanes are a common component of

many systems

A formally specified and verilied backplane

could find wide use in critical syslems

Powerful building block for ullrareliable systems:

Formally specilled and verified processor

resident on formally specified and vorified

backplane bus card

Byzantine Resilient Virtual Circuit
Inter-V, G Communication Abstraction

a
,ml

_,11.¢ Y[h t

17 ii

_ e

,ld,.(. J

.... kl_,lltl',I II

JJllll_ll lenl by non-faulty members of s source VG Ire

(:orrectly dei|vered ¢o the non.fluffy members or rec|pMnls

Non-faulty fflembers of recipient VGI receive messages In the

(wlhlr eenl b)_ the non-feully members ol the _ource VG

Non-Ilully nlemberl of recipient VGI rSCSlVe messages in

|dlnlicll order

The IblOlull l|mel ol arrival o! corrl.apondlng melelgel el the

members of recipient VOs dllter by a known upper bound

The time between I '.'slid message IrXtnsmlillon request and

ntllllgl delivery pGnllnl a know. upper bound

The BRVC !=blllrection Is supported by the NEe

VG Synchronization

VGe are synchronized upon periodic timer

Interrupts (e.g., at 100 Hz)

Timer Inlerrupl$ occur within a bounded skew on

ell members of VG

Upon timer Interrupt a VG performs a

synchronizing act (I.e., message passing using

BRVC)

Send message to self

Await reception

I P,I(_Mcmt_r
o

I-......,,--'t

I

" %t_,lhll_ " IIm_
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Rate Group Scheduler

FTPP (:3 ueas tinmr-boead praempllve tale group
ichoduter

Vm'kmt of rate-monotonic scheduling optimized

for Itecltive talk luitsa having harmonic Iteration

rates

Teaks Interact only ¢ frame boundacm

P,." :--H--_ :|,-F;._ ':k-- _,N.J.---I

FTPP 05 echedzdee appropriate ta_s st each

#m boundary

7_moikxmdwy I Comp_tld _ SUlnld RGI
4. :1. 2, I 4. 3, 2, 1

4 4

I-3 4, 3 4+ 3

4, 3, 2 4, 3. 2

4-S 4 4

Inter-VG Communication

FTPP tuks communicate using message passing

q[ueoe,, millage 08 _ places message onto

outgoing queue to NE

FTPP O8 determines desUnatlon VG from task-to-

VG mapping table

OS lranmits message queue to destinatinn VG

using BRVC

Recipient VG's OS reads message from NE and

places Into destination leak inpul message queue

=et.¢LeYe_.lmllsage as csll accesses appropriate

lask input queue and deUvers message Io Ink

All schedulise and inter-VG communication

assertions are indeoendenl oJ YO redundancy

level

FDIR

FOIR partitioned for valldatabtllty

Local FDtR runs off each VG

symm _m ran,,o,id,s_nai'd_a (e.g,,:
fonm_ sedaedvo)

Alg_rilhm:_........... : .........

Loc_Foe

Execulea soil _sfs

Scrubs RAIl (h-_k_p+ndent of

chareclerlst_s of nppllcat_n task suets)

Periodically frammllts self test resuiis is

syslem FDIFI via "presence message"

System FDtR

EseminH con_mts Lqd syndromes o4

preleMcs nlessa_es to diagnose senders

Failure to receive presence meSlage within

bounded _ impt_le common-mode failure

O4eancle(

Many recovery polick.I possible in FTPP

Reduce redundancy level

l_mlegrat, feu_l_edc_ponent

Rep[ece fauJted +omponent with spare

System FD]R_llerm_-_es epproprbter_very _::!

tmnmrnt_ recovery commands to local FO_

.ed.++vm+r..........:
performs gk)bal sysiem-level recovery

Musl M |hal iys|em FDIR determines corre_

recovery action as s function of diagnosed

component

Mull show thai local or system FDIR correctly

ca_rles ou( q)eclfled recovery
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Heterogeneous Kernels on FTPP

Not all kernels tn FTPP need be Identical as

long as they can communicate using BRVC

FTPP can host rate group scheduler on

production VGI and small formally varified

kernel on formally verllled VGs

Message aassln_a throu_oh BRVC subsumes

synchronlz!tlon so Ihe formally verified

kernel would not sxD!!cllly Perform

synchronization of redundant sites

The formally verified VG would execute the

system FDIR function

Work in Progress: Scoreboard
Specification and Verification

Currently collaborating with eRA to formally

specify Scoreboard

Scoreboard Is s crlllcal component of FTPP

Comprises approximately 50% of NE circuitry

Enforces BRVC abstraction

Business Model:

FM experts working closely with engineering

staff having little exposure to formal methods

Separate funding (Draper not specifically

funded to collaborate)

Scoreboard described in VHDL and constructed

using aulomated synthesis (Synopsys)

VHDI. used as common language between Draper

and eRA

_TAsA--"F'__, _-_----_'_'-';( _-_ _iSA'F"_'_--_II Workshop IS-13 AuguSt Igg2

Conclusions from Scoreboard
Specification and Verification

Formalization of Scoreboard requirements

uncovered several specification omissions and

ambiguities

Collaboration would have been closer and Impact

on design greater if Draper had been specifically

funded to participate

Incremental cost on a $2.4M brassboard

development program Is small

Benefit to cost ratio is very high during the

conceptual study and dalaJled design phases

Work Planned and Critical Needs

Work Planned

Components similar to remainder of HE (i.e., FTC,

voter) have been formally specified/verified

Would like to adapt this work to FTPP

Actively seeking FV processor to design Inlo

FTPP

Planning to develop selected subset of RCP

software for FTPP

Viable processor

Formal subset of VHDL, with nonempty

Intersection of syntheslzeabla and tarsal subsets

Continued formalization of FTPP NE

Formal model for FCR backplane bus

Formalization of critical OS functionality

Business model for formal methods insertion

NASA Fol'm_ Skimods Workthop l_'i_J "_--2_"
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Formal Methods at

IBM Federal Systems

David Hamilton
IBM Federal Syst, ems

PREC£DING PAGE BLANK ROT FILMED
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Formal Methods

Technology Transfer

Some Lessons Learned

David Hamilton

IBM Federal Sector Corporation

Second NASA Langley Formal Methods Workshop

Aug/92

Introduction and Purpose

• To cover

1. Some IBM involvement in Formal Methods (FM)
projects

2. A perspective on difficulties of.technology transfer
(beyond a single project)

Purpose is not to

- sell the "IBM approach"

- argue against feasibility of FM

Purpose is to

- learn from other FM technology transfer projects

- suggest some possible future directions

Contents

Inlroduclio_ _ Purpotlo ............................................ t

Hatlan Millz _ $J[W ............................................... 2
Clomv_m ....................................................... 4

SEDL ........................................................ g

_lepw lie Vet f ¢&( ¢m ...............................................

C1C$ ........................................................
rol_ (Vor f caz on ot ZSz) ........................................... "1:

Other PrOjKII _ AI_Cl4KIh_I ....................................... 1t

Piece on (_l;_/ (mid.Ill ........................................... 12

_um_ae, y ...... t3

Cone tUlliOcql ................................................. 14

Aue_ i

Harlan Mills and SEW

Mills led massive software engineering education
program
- Software Engineering Workshop was cornerstone

II 2 week course
JJ Taught to all programmers
II Required to pass final exam

SEW centered on mathematically-based verification
- Functional instead of axiomatic

II model oHentad instead of property oriented
II designed to scale up (stepwise refinement)
II easier for programmers to understand

- 2 pieces
1. Deriving program functions

II Trace tables (basically manual symbolic
execution)

II Recurson instead of loop invariants
2. Module-oriented

II abstract data types
JJ constraints/closure on state data (abstract

state machine)

Au_ 2
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Harlan Mills and SEW ... Cleanroom

• SEW designed to be practical

- relatively informal

- scaled up via abstraction/refinement

- lots of examples and exercises

- final test : pass/fail

• Advocated for all programming, not just critical parts

• no support beyond education

• Named after silicon chip manufacturing environment

• Built on SEW foundation, adding

- Continuous inspections (SEW style verification)

- Statisical testing (MTI'F prediction)

• Advertised through case studies, not classes

- no tools

- no consulting

• General reaction was that it was impractical

- too tedious

- seemed only for toy problems

• Did not gain widespread use

Demonstration projects using highly skilled

developers

To demonstrate benefits

To show it can be done, it is practical

• Demonstrations projects were success stories

&ug,_ 3 Au¢,_g 4

Cleanroom ... SEDL

Showcase project was COBOLJSF

- Transforms unstructured COBOL into structured
COBOL

- 52,000 SLOCS developed using Cleanroom

- Results

II 740 SLOCS / labor month

II 3.4 errors / KSLOC (before first execution) (70
ave incl. UT)

II no error ever found during operational use

Advocacy of Cleanroom continues

- Widespread use not yet attained

- But there is a lot of interest in Cleanroom

o Intended to support SEW/Cleanroom verification
concepts

Built as an extension to Ada

SEDL compiler generates Ada

Supports design execution
- though SEDL generated code my be inefficient

Includes

- Abstract data types (set, list, map, etc.)
- User defined data models

II model vs. representation
II constraints

- Supports mathematical notation
II {X in CHARACTER : x/= "Q'}
n exists X in S : P(X) and exists Y in T : P(Y)
II P>l and not (exists Q in 2..P-1 : P rein Q = O)

• Use of SEOL is not widespread
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Other Projects and Approaches Note on Quality Emphasis

Application above the code level

- Development of a "Box Structures" design

language

- Development of a "Box Structures" approach to
requirements

- Results

II SA/SO approach to design most popular new
approach

• Software quality has extreme emphasis

- Great emphasis on process improvement

- Serious attention given to quality goals and
measurement

- Quality motivaUon programs

II Requirements still written in English

Emphasis on SEW concepts

- Concepts generally well accepted

- Loss of rigor reduces mathematical basis

II awards and recognition

II Manned Flight Awareness program

• There is willingness to work hard and invest for quality

The question is not what or how much but how

- FM Is generally perceived as not helping

AWld_ !1 A_I_2 _2

Summary Conclusions

e

AW_4:

Goal was to Increase the use of formal mathematical

approaches to software development (beyond a single
project)

1. First through education

2. Then through demonstration projects

3. Then through tool support

4. Then by making methods more practical

5. Finally through direct support (consulting)

There have been successes

- not nearly as widespread as desired

This story is not unique to FM

- The problem is with technology transfer, not with
technology

Conclusion: Technology Transfer is very hard, even
with
- extensive education

- tools support
- demonstrated successes

Possible future directions

- More consulting ('hand holding') (product
champions)

- Use only a core group (FM may just not be for

everybody)
- Require use of FM (selected groups)
- Success story close to home

II technology transfer diminishes rapidly as a
function of distance

II long term committment is required (success
story requires continued follow-up)

- Different formal method(s)
- Different toots (e.g., theorem prover)

A_ll/_l t4

FiL/vi_D
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Reliable Computing Platform

Ben DiVito
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Clock Synchronization

Verification and Implementation

Paul Miner
Systems Validation Methods Branch

NASA Langley Research Center
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NASA's Strategy for Technology Transfer

Sally Johnson
Systems Validation Methods Branch

NASA Langley R,('soarch Center
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NASA'S STRATEGY FOR

TECHNOLOGY TRANSFER

by

Sally C. Johnson

NASA Langley Research Center

GOAL

Technology Transfer to hldustry

One of NASA's major goals is to provide tile U.S. aerospace indus-

try with the tools and techniques they will need to be world-class

competitors ill tile coming decades.
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Working with the FAA

• Digital Systems Validation Ilandbook Chapter

J Tutorial presentation to SWAT (SoftWare Advisory Team)

• Formal speciflcatioli of GCS application

• RTCA committee DO 178B standard
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Verification of FTPP Scoreboard

and Spectool

Mark Bickford
()dyss('y I1cscarch Associates, Inc.
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Boeing's Work in Formal Methods

Dave Fura
The Boeing Company
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DO-178B and Formal Methods

George Finelli
Assistant Head, System Validation Methods Branch

NASA Langley Research Center

PRECEDING PAGE _NK rlOT FILMED

133



a
z

0
ri-

m

I--
n-

!
'r: o-

°_o 8 .-

O_U U. ¢:--

0
-1-
I-
uJ

_1

n-
O
U.

C_
Z

m
cO

|
0
C]

I

m

0

- 'T,

E_
® .--

134



uJ
I--

0
Z

..J

0
u.

Mm _

_ C_E

'" _._ o

o _
_ WQO

.,J ,_

i "_. _.
z_'_

el N

O
F-

ii
Z

_.9.
,.,1

ffl

O "
o_

,tn, ,.

o_

,.: N

I I

E
e4

_ °_

"8.0

® _ " 0

!i_ g _ o_

• • • •

135



: z

i

i-

=

136



Introduction to

the Boyer-Moore Theorem Prover

Warren Hunt
Computational Logic, Inc.
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Introduction to PVS

Natarajan Shankar
SRI International
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Specification and Verification using PVS

N. Shankar

shankar_csl,srl.com

Computer Science Laboratory

SR] International

Outline

This talk is a short tutorial on specification and

verification, using PVS as an illustrative example.

• Background to PVS

• Overview of PVS

• Some Examples

Background: Past Experience

Considerable accumulated experience on

verification at SR!

Systems developed at SR| include: Boyer-Moore

Prover, HDM, OBJ, STP, EHDM, etc.

Other Systems used include: Affirm, RRL,

Gypsy, Muse, etc.

Verifications include: Byzantine fault-tolerant

clock synchronization, Byzantine Agreement,

G6del's first incompleteness theorem, and many

others.

3

Background: EHDM

Designed at SR] around 1984.

A specification environment based on

higher-order logic with parametric modules,

implementation mappings, Hoare logic prover,

etc.

Theorem prover based on skolemization, manual

instantiation, and Shostak's decision procedures.

Example verifications Include: Byzantine

fault-tolerant clock synchronization, Ramsey

theorem, Byzantine Agreement, Fault-masking

and Transient recovery, etc.

C.-
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Background: Lessons Learnt

Decision procedures are extremely useful but

only a small part of what is needed.

Highly automatic theorem provers are

Inappropriate: difficult to control, and provide

very little useful feedback.

Low-level proof checkers are inefficient (both in

machine and human terms), and also fail to yield

a satisfactory proof.

Logics with limited expressibility are easily

mechanizable, but place a large burden on the

specifier.

Some highly expressive notations are nice for

pencil-and-paper work, but might be difficult to

adequately mechanize.

PVS

Started In mid-19go.

The goal was to combine clear notation with a

productive proof development environment to

produce machine-checked, yet "humanly

readable" proofs.

PVS was primarily Influenced by EHDM, but also

adapts ideas on language and Inference from

]MPLY, Boyer-Moore prover, LCF, HOL, ML,

Nuprl, Yedtas, OBJ, and many other systems.

PVS consists of a core language definition,

parser, typechecker, and proof checker.

Contributors to PVS Include Sam Owre, John

Rushby, Friedrich von Henke, David Cyrluk, Judy

Crow, Carl Witty, and Steven Phillips.

PVS: Overview

PVS has been used to check proofs of

• the Boyer-Moore majority algorithm

• ordered binary tree insertion

• a version of the Schr0(ler-Bernstein theorem

• Byzantine Agreement

• a pipelined processor (due to Saxe), and

other hardware examples.

These proofs can typically be completed in less

than a day.

Overview: Decision Procedures

PVS proofs make heavy use of arithmetic
decision procedures. Any THEOREMbelow is
automatically proved.. CONJECTURESare either
false or unproved by decision procedures.
ar|thu4tic : TNI_ItT

BI_III

Z,1._: VU _Imber

arith : 11qrOP.EIq

x < 2*y AID 7 ( $*v II(PLII[S $,0= • tS*v

badar Ith : COl3ECTOlU[

x • 2* 7 J]l_ • • 3.1r JNPL]'I_ 3*x _ .17*v

badlrith2 : CONJECTUJ_

s<0 AID y_O II(IPLIES z*7_O

blaise: COil JECTVltK

(x/y) > • lltPI[.IES • • (7ov)

|ooddiv : COBJ ECTORE

yl-O liD (x/7) • • IIIPLTtS • • (Tev)

ll5otkordtv: _8J(

7 /" o An, (•/7) • (vl]F) ZllIPl,tSS ((x-v)/1) _ o

i, J, k: VIA Snt

latarlth : _W

2*1 • S lJ_ i • i IIqPLII_ 5 = 2

badLr|th$: COII31_ruRE

2*• < S lID • ) t 'J[IIPLIES • • 2

tritkuetl¢
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Type Correctness Conditions

Denominator for division must be non-zero.
Typechecking the previous theory generates type
correctness conditions, baddtv_TCCl is not
provable, hence a type error.
nrithmttc: TllrnlY :.

B[G_I[

a, y, v: VAin number
arltb : THEOREM

x < 2 * y Ago y < S * V IMPLIES S • x < 18 • v

bndar Ink: COMJECTURE

n < 2 • y AND y < 3 • • IN?LIES S * x < 57 * •

badar |Oh2 :COM JECTO_
x < 0 AID y < 0 IMPLIES I * 7 • 0

baddiv: _l Jgc'ruP.E

(z I y) > • IMPLIES x > (y * v)

Subtype TCC |anerlLtod for y
boddiv.TCCl: OgLIOATIOg (FORALL (y: nuuber): y I- 0)

|ooddi• : COIJ_
y I= 0 Ago (x / y) • • IMPLIES n > (y • v)

anotberdtv : TNEOIkEIq
y 1- 0 AND (x I y) • (• / y) IMPLIES ((z - v) I y) • 0

i, J, k: VIM Inn
Intarlth: THEOREM 2 * i < S Ago i ) I IMPLIES I - 2

badtrlth$: COMJECI_ 2 • _ < S AND a • i |MPLIES a - 2

END aritb_tlc

Abstract datatype theory

binary.tree.adair: TYPE] : _llEORT
BF_IR

binary_tree: TYPE
lest?, node?: PgED[binary_trae]
_oaf: (leaf?)

node: [T, binary_trot, binary.tree -> (node?)]
val: [(node?) -> 1]
left: [(node?) -• binary.tree]

right: ((node?) -) binary_tree]

Iost.exteneionallty: AIION

(FOAALL (lest?.war: (leaf?)): lest - leafY.rat)

node.entensionallty: AXIOI'I
(FORALL (node?.var: (node?))!

node(vol(nodeT_var), left(node?_war), rtgbt(node?.vtr))
• noda?_var)

val_nade: AXIOM
(F_tILL (nodal.war: T), (noda2.vnr: binary_tree),

(nodeS.ray: blnary.tree):
rnl(node(nodal.var, node2.var, nodeS.tar))

= node l.var) ......

left.node : AIiOW :_-
(FORALL (nodel_vnr_ T), (node2.var: blnary_tree),

(nodeS.vat: blnary_tzee):
left(node(nodal.vat, node2.var, _odeS.var)) " node2.var)

right.node: AXIOM • _ * _.....
(FOltALL (nodal.vat : Y), (node2.var: binary_tree),

(nodeS_•st: blnnry.trea):==- ...... _-

rtsht(node(nodal_vnr, node2.vs_r, nodeS.tar)) • _ode$.var)

11

152

Example: Binary Trees

Binary trees can be defined as abstract

datatypes.

The following datatype declaration introduces

the constructor leaf with recognizer leaf?, and

constructor node with accessors val, left, and

right_ and recogniz--eT-_o-d_. .............

Typecheck;ng ...................this datatype declaration
generates the theories binary_tree_adt and
binary_tree-rec.mod (shown below).

binary.tree IT : 7YF*F._ : DATATYPE
M_GTJ
1oaf : ]oaf?

node(•a1 : T, left : blnary_tree, risbt : blnary_tree) : _oda?

END binary.tree

10

blnary_tree.disJolnt: AXll_q

(FDMALL (binary.tree.war: blnary.tre*):
SOT (leafY(binary.tree.war) AND noda?(blnary.trea_var)))

binary.troe_Inclnslvet AIION

lanf?(blnary.tree.var) OMnodo_(blnary_trae_var))

binary.tree.induction: _IIOM _ _ ..........

(FOgALL (P: PRED(blnary.tre*]):
p(laaf)

m
(_ORALL (nodal.vat: T), (node2.var: binary.tree),

(nodeS.vat: binary_tree):

p(nnds_.var) AND p(nodo3.var)

IMPLIES p(node(nodel.var, node2_var, nodeS_vaT)))

IMPLIES (FOItALL (binary.iree.Vdr_ binazy_iree)£ =
p(binary.trae.var)))



binnry.trse.nnt_ro¢((leaf? .fu : mat),

(nrdoT_/u: [7, nat, nst -> net]))."

[binary.tree -> nnt] -

LJU_BDA (binary.tree.vat: binary_tree):

CASES blnarF_tree_vsr Of

I,-_ : Isl/Tofsn,

node(nodol.var, node$ovar, nodeS°vex):

node?_fnn(nodel_var,

binoryotree.natorec (leaf?of u,

nrde?.fsn ) (nods2.vnr),

btnnry.t rao.nnt _roe (leaf ?°fun,

nrds?_fu) (node$.nar))

EIIDCASES

binnry.tree_ordinal_roc((leaf?ofU: ordinal),

(nodo?°fu: [T, ordinal, ordinal

*> ordinnl])):

[binary_tree *> ordinal] =

LAKBDA (btnary.trSOoVar: binary_tree):

CASES blntryotrOo.var OF

lesf: lsnf?_fnn,

node(nodal_vat° node$.vn:, nodeS.nor):

node?.fun(nodei.vnr,

blnarT.troe°ordinal.rec(leaf?ofun ,

nodo?.fen)(sode$.vnr),

btnnry_troo.ordtnnl_rec(loof?.fu,

node?./nn)(nodeS.var))

ENDCASES

END binnry_troo.edt

Recurslon combinator

b|nixT.tree_rsc.uod_r: 1RPE, r_ni_*: 1R1PE]: TIIIE_T

lf_OIl

OSIWG binary.tree.adt IT]

binnry_treo.roc((leaf?_fu: ruse) ,

(nods?.fnn: [Y, rule° rs_o -> range])):

[binary.tr** *> ruse] •

LJlQDA (binary.tree_vat: binary_tree):

CASES btnary.trno_var Or

leaf: lee/?.fsn,

sods(nodal.vat, nrde2_var, nodeS.vat):

nods?.fua(nodel.var,

binary.tree.rec(leaf?_fnn, sode?.fun)(node2.vor),

btnnryotree.ye¢(leaf?.fun, node?.fun)(nodeS.vnr))

ENDCASE3

ESD binary.tree_roe_nod

12

Ordered Binary Trees

obt IT : TYPE, <= | (total°order?[T])] : TflrnRT

BEOl|

OSlJlG binnxy.troa.ndt, blnnry.treo.rs¢.n_d

A, R, C: VAR binaryotrnn[T]

r, y, zt VAR T

pp: Vii PiED[T]

checknll((pp : PRES[T]), A): heel -

binary.tree.roe(TRUE,

(LANDDi s, (a, b : beol):

(n An b AND pp(s))))(I)

t, J, k: TAR nat

line(h) : net •

blnary.trne_re¢(O, (LIJ_BDA z, i. J: I • J • l))(i)

ordered?(A) : ItP.C_tSlVE boo1 =

(IV node?(A) TNI_I (chockall((LiHBDA y: y<=vol(i)), loft(A)) AND

¢hocknlX((LANDDA y: vnl(A)<-y), rloht(A)) AID

ordored?(lnft(i)) AI_ ordered?(risht(A)) )

ELSE TRUE _IY)

BY SiRe

insert(n, A): ItEC1_Sl_fl[ btn_7.trea[T ] •

(ClSES A Or

le_tr: node(x, leaf, leaf),

node(y, |, C): (XF n<ey TREE node(y, insert(z, B). C)

IDJE node(y, B, insert(n, C))

ESDIF)

EImCA$1_)

BY (LAHRDA n, A: size(A))

orderodT.inoert.step: FOIt)NLA

pp(x) AND checkall(pp, A) INPLXES

checkull(pp, tneort(x. A))

ordered?sinister F_A

orderod?(A) ZKPLIES orderod?(|nssrt(r, A))

END obt

13

Example Proof
ordnred?.lssert :

i .......

{1} (FOI_tLL (x: T). (An binsr7.trne):

ordorod?(A) ;NPLIES oz_lered?(insert(z, A)))

Rule? (induct "A")

Àeducate I on A,

this yields 2 enbKoals:
erdered?.|nsort.l :

i .......

41} (FO_iLL (n: T): orderrdT(leaf) IMPL|Im orderedT(tnnert(n, leaf)))

Rule? (skolemf)

For the top quLutlfior in 1, ve introduce $kolem conetute: (xf$)

thin ellt_]Ifles to:

orderod?.ineert.l :

i .......

{i} orderod?(lea/) ZNPLIES orderrd?(insert(n!$, /*sf))

Rule? (dslmp)

Applying dieJunctivo stmplifl¢ntion,

this sluplifieo to:

orderedT.tnsert.l :

4-1) orderndT(leaf)

i .......

{1} ordered?(Insert(n_$, leaf))

Xol*? (rewdte "insert")

ILegrittl_ ustn 8 insert,

this simplifies to:

14
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erdered?.insert.l :

[01] ardersd?(leaf)

J.......

_1} ordored?(noda(z_$, leaf, leaf))

_sle? (rewrite "ordered?" -J-)

Reerttie| elan| ordered?,

this 81upli/ie8 to:

ordersd?.intert.l :

[-1] ordered?(leaf)

j .... ...

_1} (¢heckall((LAKBDl (y: T): y _- sf$), leaf)

JRD ¢hecka11((LLK6D& (y: T): z!3 <= 77, leaf)

AID ordered?{les_) AND ordertd?(lea/))

Rule? (assert)

;nvokis( decision procedures,

this simplifies ton

ordered?.ineert.l :

[-1] ordered?(leat)

| .......

{i) ¢heckell((LIKBgA (7: Y): y <_ Z!$), leaf)

4mD checkell({L_qBDA (y: T): s!3 <-_), leaf)

Rule? (auto-rewrite "blnory_tree-rec[T. booI]')

_nsta111n| aUtOSttiC nitrites:

binary.tree-roe[T, bool],

this simp)ifles to:
ordsred__insert ,t I

[-1] ordersd?(leaf)

| .......

[1] chstkall((LANBDA (y: T): y <= z93), leaf)

AgD checkall((LAHBDA (y: T): s!$ <- y), lee/)

orderod?.IMert ,2 x

Uo . .....

_1} (IroJtALL (nodal.vet: T), _uode__yer: bleary.tree),

(nodeS.van : binary.tree) :

(FO_LL (x: T):

erdsrod?(node2.vtr_ ]NPL]_S orderod?(iusert(n, Bode2.var)))

AgD

(FORILL (z: Y)t

ordered?Cnods3.var)

INPL] _-q erdered?(lssart{z, noda3.sar)))

IMPLIES

(rORILL _n: T)s

ordered?(nodn(uoSel.vtr, node2_ver, node3_var))

INPLIES orderm4?(imeert(s, nods(nodei.var,

node2_var,

nodeS_vet)))))

Rule? (sko|eml)

For the top quL_tif|sr in |, st Introduce Sk01eu constants:

(nodei_var!4 node2.var!S node$_var!e) _

this simplifies to:

ordered?Jnsert.2 :

J .......

_1) (FOItALL (_: T):

ordered?(node2.ver!S) INPL|ES erdered?(lnsert(x, node2.vtr:S)))

AID

(FOP_LL (x: T):

ordered ?{noda3_v_dr _6)

IMPLIES ordsred?(insart(n, node3-vtr!e)))

INPLIES

(FORILL (x: T):

srdered?(node(nodet_var!4, n_isl_var!5, node3_vsr!6))

ZNPLIES erdsred?(issert(z, node(nodet.van_4,

node2_var ! S,

nodeS_ray! e))))
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Rule? (then (spllt)(rewrlte "checka."))

Splttttn I on, Junctions,

this yields 2 sebt|oele=

ordered?Jnesrt.l.l :

[-I] ordored?(leef)

U.......

_l} checkall((LAmJDA (y: T): y <- z!3), leaf)

Re_rtttn B usi.g ¢hetkall,

This complete| the proof of ordered?.insert.|.l.

ordersd?.tHart.t.2

[-13 ordered?(leef)

| .......

_1) chetkell((LIRRDA (y: T): sis <- y), lee!)

_e_rttJl_ esJn_ c_ecbell,

This completes the _rOOf at ordered?Jnsert.l.2.

This coupletes the proof of ordered_-i_sertoi, "

Rule? (dslmp)

Apply|uS dlsJ_nctivs slmp11ficatlo_,

this simplifies _to:

ordered?.inssrt._ _ " " "

|-i) (ro_.c_ (s, T): . - ......
ordsred?(n_de:_ver!$) .....

_NPL_ES ordered?(ineert(s, node_.var_8)))

4-2) (F_ALL (t: T)_
• rd-er ed ? (u_de $.var !e)

tMPLIE$ ordered?(tesert(x, uode3.ver!6)))
| ....... : .

{1} (YOItALL (z: T)_ ....

orderedY(node(nodelovar!4, node2-ver!S, _ode3_vsr!6) )

_NPL]ES ordered?(inssrt(z, node(nodel.ver_4,

nods2-varV6o

nods$.var!6_)))

Rule? (skolem!) . - _

For the top quutlfler in |, ee introduce Skoles eonstuts: (x!?)

ordered?.ineert.2 :

[-1] (FO_ALL (x: T):

ordered?(nsde2.ver!S)

|NPLIES ordered?(tnssrt(u, node2.var!6))) _

[-_3 (FI_ALL (x: T_." _

ordsrsd?(uode3_var_e) - -

|K?LIES orderedT(inssrt(x, uo_e3.ver!6)))

{1} ordered?(uods(nodei_var!4, node2_rer!_, node3.vax!6))

INPL|ES ordered?(tnsert(x!7, nods(_odsLver!_,

node2.var!5,

node3_varf6)})

=

i



lone? (rewrite "ordered?" -J-)

Re_ritin| nsiq erderedY,

thee li_plttiom to:
ordored?.luirto_ i

[-1_ (_]tALL (s: ?):

arderod?(nedi2.varlS)
INPLIU ordered?(tniert(z, node2.vulS)))

[-23 (FOtALL (xi 1):
orderod?(node$_varte)
iHPLI mt ordered?(lnsart(z, nodeS-vet!el))

| .......

{1) (checkill((LiiDDA 47: T)z y <- nodel.vul4), nodel.vtrIS)
IND chacktll((LllBDl (yl 1): aodai.vlrl4 <= y)0 nodeS.vitrO)

IllD ordared?(nodni-varI5) _ ordared?(nodel_vir!$))
IMPLIES orderod?(tnieit(z!7, nodi(nodal.virtd,

Rile? (dMmp)

lpplyin| disjunctive linplificatton,
this olnplilies to:
orderod?.lniert.2 :

nodal.rifle,

andeS.yarnS)))

I-i] (FORILL (x: T):
ordere_l?(node2_viilS)

INPLTE3 ordarod?(tnnrt(z, nodo2_virtS)))
[-2] (F_ALL (in T):

ordorod?(nodeS_rule)
IMPL|E3 ordsrod?(ineart(n, nodo$.varle)))

|-$) ckeckall((LAmtDA (y: T): • <= nodal.var!4), noda2.vez!5)
_-4) ¢heckall((LINBDA (y: T): nodal_vat!4 <= y), nodeS_vat!El

_-6) ordarad?(node2-vtrt6)

_-6) orderod?(_oda$_virle)
| .......

{1) ordirod?(lnoert(zt?, node(nodal_oar!i,
nodo2.varIS,

nodo$_varle)))

ael.? (rewdte "insert" "l')

Raliitin| asia| insert,
this simplifies to:
irdarod?.tniart .2 :

[-13 (FOtILL (xi ?):
ordorod?(nodei_vtr iS)
|RPLI N oIdared?(innoTi(n, nodoi.varIS)))

[-2] (refILL (z: T):

order ed ?(node $_vir id)
IMPLIES oiderod?(lnoerl(x, nodal.oar!S)))

[-3] (lickiII((LIHBDi (I'. Ill y <- nodil_vnrii), nodal.railS)
I-el chiokill((LllIDl (y." l): nodil.illFt4 l- y), n_ol_rari#)
['el ordered? (nodil.var l 1)

[-6] ordered?(nodo$.vu I$)

J-------
41} orderod?((IP tit <= node!.varl4

node (nodal_vet i4,
insert(x!?, nodal.lit I S),
nodeS_vat i 8)

ELSE

node (n ode i .vat ! 4,
nodo2_vir .iS,
insert(liT, nodeS.vat !el)

_IY))

lille? (lift-If)
Ltitini IF-oenditionn to the top lovolj
thin oiIplifte8 toe

orderod?.lniert .2 :

[-1] (_tILL (n_ iS:
or dar od? (node2-rLv 18)

]NPLI II orderod?(lnsert(z, nodel_larlS)))
[-23 (POItILL (x: T)i

ordered? (nodel.vir 16)
11(PLIEI orderod?(tnsort(r, nodol.larIO)))

[-$3 ckockiII((LIKBDI (yi l)i y <u Iodol.var!l), Iodn2.varl$)
[-4] checkall((LAliDl (7: _): nodal.void <= 7), aode$.varl6)
[-83 il_lered? (nodsi_iu iS)
[-63 ordnrndT(node$_vu 98)

,(1} IF nit <" nodei_virl4
TIE!

ordered? (node (nodeS.vat 14,
insert(ill, node2.vir 16),
nodeS.vii#d))

ELSE

ordered? (node (nodal-vaT t4,
nodal.vailS,
tHeft(hi?, nodel.vir is)))

_mDlp

Role? (propS)
By propositional 8tilplificatien,
this yields 2 slbioalsl

ordarod?.tniort.2.1 i

_-t} II? <- nidei.vlrti
[-2] (FOaALL (x: 1):

@rdared?(nodel.rnrIS)

I_PLiF_ orderod?(insort(r, nodel.virIS)))

[-3] (FOtALL (l: 1):
ordarod?(node$_var!8)

IMPLIES ordered?(innert(x, nodeS_rifle)))
1-43 ¢hicklll((LIHlDI (•: l): y I- I_ll.virl4), nodil_¥lr!_)
l-S] chicknll((LAHDDI (l: 1): nodit.riri4 <- l), nodi$_rlI!l)
[-8] oTdorad?(nodol.variS)
[-7] ordered?(nodo$.varlO)

| .......

{l) orderi_l?(node(aodei.viri4, insert(liT, nodei_var!S), nodeS.rifle))

Rule? (rewrite "ordered?" _-)

Relittin| olin| ordered?,
this itnpllllel tel
ordirodl.tnieri.2.1 :

I-el 117 <t nodil.viri4
[-i] (FORILL (s_ i):

orderod?(node2._ir!S)

INPLIES ordarid?(lnsert(e, nodeS.oar!S)))
(-$) (rOtlLL (z: iS:

ordared?(noda$.vlrtd)
INPLIES arderod?(lnoart(z, nodeS-rifle)))

I-i] chocklll((LilIDt (In l): I <8 nodal.in!l), nodal_vailS)
[-63 chsckilI((LIKBD& (y: T): nndet-vir!4 <= 7), nodeS_vat!S)
[-4] ordarsd?(nodsi.rnrIS)
[-7] ordered?(nodi$.var!8)

_1} (chockall((LItIDl (yi T): 7 <, nodei.var!4),
insert(x!7, aodel.rer!S))

AID cbockill((LIMBDI (7: T): nodeS.vet!4 <= y), nodeS.vat!8)
lID ordered?(tnsort(s!10 sodil.oar!$))

lID oFdered?(nodi_.rlr!#))
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hle? (quant?)
Found •ubetltntion:

• pt• X_7t
l_stnntlatln| qua_tlfind variables,
thl• •Implifln• to:
ordnred?.ln•ur_.2.i :

[-1] x_7 <= aodnl-var|4

_-2) •rdnrud?(nodn2_v_S) INPLIES ordurnd?(tneert(x!7, noda2_var!6))
[-3] (FORILL (n= T):

ordnred?(nodnl_vLr_8) ....

IHPLIP.S ordered?(tne•rt(u, nodeS_vat!6)))
[-4J ch•cknll((LAPrBDA (y: ?): y <= nodol_var!4), nede_ovar!S)
(-6] ¢h•ckaII((LANBDi (y: T): nodeS.st•|4 <- y), nodel-var!O)
[-63 ord•rod?(nede2-•tr|6)
(-73 ord•rod?{nodn$_var|e)

J.......

[J] (¢becka]I({LJNBDA (p: ?): 7 <, nodal_vat!4).

inJ•rt(e!7, nodn2-•ar!S))
A]ID chockall((LANBDA (7: T): nodal.vet!4 <= y), nod•$_var!6)

AND ordorod?(lnnert(z!7, uodn2_vur_6))
AID ordared?(nodel_vur!e))

Rul•? (propS)
B7 propositions1 •Inpllficntiou,

this siu_pltfie8 to:

hi•? (rewrite "ordered?" _-)
neuritis! u•lu 8 ordnred?,
this •impllfie• tot
ordnred?.ln•nrt,2.2 :

[-i) (PmtiLL (x: 1):
orderod?(nod•2-var_S)
|ffPLl_ ord•red?(in••rt(u, noda2_var!S)))

[-:] (FORALL (•: T):

ord•red?(nodnl_var|e)
IMPLIES srdered?(insert(u, nodeS_vireO)))

[-3] nhnnkal|((LMfBDA (y: T): y (" _od•J_var!4), node__var!G)

(-4] ¢h•ckall((Li_Pi (y: T): nodnl.vo_r!4 <= 7), nodal.vat!el
[-S] ordnrnd?(aoUn2_vtr!6)
(-63 ordnred?(nod•S_vsr_6)

|. .... ..
(1) x!7 <_ andes.varY4

(ch•ckIll((LAI(BDi (7: T): 7 _= :edel_vnr!4), nodo2_var!S)
lgD

chocknll((LAICBD4 (7: T): nodnl_vtr!4 <8 7),
in•orS (n!?, nodel.vnr aS))

A_D ord•red ?(uodn_ver _6)

igD ordnredT(inenrt(u!7, nodeS_vat!el))

_ulu? (quant? -2)
Found •ub•titution:

• guts •_7,
Instuntlatin| qnutlfi•d variables,
this simplifies to:
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orderedT.i=snrt.2.i :

_-t) urderad?(i_sert(u!7, =ode2.var!$))
[-_] X_? <= nedel.vur!4

[-3] (PORALL (•: T)=
ordnredT(nodnl.va_!e)

|ICPL|ES erdnred?(tnrer_(x, nodel_vur!S)))
[-4] ¢heckall((LiMBDA (y: T): y <m nod•l_vtr!4), nod•2_vnr_S)
[-S] checkall((Lilq_Di (7: ?): nodel.vtr!4 <= 7), n_d,3_vtr!e)
[-el ordored?(nodn2_vez!6)
[-13 0rderod?(node$.vut_e)

_I) checktll((LINBDi (y: T): 7 <= nodal_vat!4),
i_•ert(x_7, node2.vnr!$))

hie? (rewrite "ordered? insert_st Up,, )
Reeritin_ usiu( orderod?.insnrt_step, ._-

Thls ¢oupl•tas the proof of ordsred?.Insart.2.i.

orderod?.inlort,2.2 :

(-1] (FESILL (x: 1):

ordernd?(nodt2.vnr!_)
I_PLIES orderedT{inaert{•, nodo2_vnr!S)))

(-2] (F1]IkALL (x: T):
ordered?{nodn$.var!6)

IMPLIES _rdored?(tus•rt(x, nodel.vur'e))) ....
(-3] ¢hnckall((Lll(BDl (y: T): y <= _ode_.vur!4), n_Se__Var!_)

[-4] chnckall((L_NB_4 (y: T): nodel.•ur!4 <= Y), nodnl_vnr!6)
[-6] ord•radT(node2.vari$)
[-6] ord•rad?(nodo$.var!e)

!....... _z_, _ _ _ i_i

ordered?(n0deTno_-ei_vtr!4,-

o_dered?.insert,2.2 :

[-i] (tO,iLL (x: T):
ordered ? (eode2.•ar !S)

II_LIES ord•red?(ine•rt(z, node2_vnr!S)))
_-2} ord•rnd?(nods$.var!6) INPLIES ordnred?(tnsert(z!7, nodn3.vnrte))

[-3] chncknlI((LAESDA (y: T): 7 <` ned•i-vat!4), nede2-vnr!_)

[-4] chnckall((LiMBD4 (y: T): nodal.rut!4 <= 7), nodo3.vnr!e)
[-6_ ordered? (nede2.v_ur !S)
[-6_ oz_iernd?(nede$.vtr!4) : =_ =:,_ _ -

| ..... .. _

[1] u!_ <= nodel.•nr!4

[2] (chnckall((L&NBDA (7: T): y <- nedsl.var!4), node2.vnr!6)

in•err(x!7, nodu3.vtr._) - -- -
AND ordered?(node__vnr ! S)

AND ord•rod?(inu•rt(x!7, nede3_rar!e)))

hle? (propS]

B7 propositional •impllflcatlon,

thls 8implifi•n to:

ordured?.insort.2.2 | .....

t-i} ordered?(insert(x!?, nodel.vnr !8))

(-2] (FOItlLL (x: T):

ordered?(noda2.•_r ! _

IMPLIES ordarod?(in•ert(•, nodg__vur!S)))
[-3] checknl1((L_N_DJ (y: T): 7 <= uedni-var!4), uode2.var!_)

[-4] checkall((LANBDA (y: T): nod•l-vat!4 <,. y),_od_ar!e)
[-$] ordernd? (l_edt2.vir !_)

(-6] oral stud? (nede$.v_r !e ) ...........

{1} chackull((L/JdBDi (y: T): nod•l_vnr:4 <= y),
insert (u!T, node$.var !6))

[2] r!7 <'- nedeJ.•lr!4

Z
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hle? (rewrite "ordered?JnsertJtep")

Itelrrittn| uetq orderod?-luert_ltop,
this eimplltioe to:
ordered?_lneert .2.2 :

E-i) 6rdered? (tneert(x_7, node$_vtr 96))
[-23 (F_tJLL (x: ?)=

ordered? (no'el_veer ! 6)
INPLIES ordarod?(lnsert(x, nodal-vat�S)))

[-3] checkall((Li_DA (Y: T): y (" sodal_var_4), noael_rarIS)
[-4] cbeckall((LlnDA (7: T)= nodai.v_r_4 <o 7), node$_varle)
[-6] ordered? (node2.vtr _S)
[-6] ordered_ (node$.rtr) 6)

| .......

41) nodel.wr14 <0 x_7
[2] chackslI((LANBDA (y: T): uodel.vsr_4 <- y),

lasert(l_7, aodeLrtr _e))

[3] st? <- so_ei.v_rt4

hle? (typepred "obt.<-')

Addtn| type ¢onstraiste for obt.< e,
this etnpliftes to:
ordered?.lnsert .2.2 :

4-1} total.order? IT) (obt.< =)
[-23 ordered?(tsaort(s _7, modeS_vatS el)
[-33 (FOIt&LL (s: 7):

order od?(nodelovtr tS)
INPLIES ordered?(iseart(x, nodal_verbS)l)

[-4) checkall((LANBDA (Y: T): 7 <" nodoi_vtr_4), nodel.vsr .*8)
E-S) chockall((LARBDA (y: T): nodal_varY4 <= 7), nodeS.varY8)

• [-6] ordered? (nodal-vat .I6)
[-7] ordered? (node$.vu t 8)

| .......

[1] aodel.ver94 <- x17
[2] checkall((LAl(-1®4 (y: T)t nodal.verSa <- y),

lxeert (s aT, nodeS_vat _4))

[$] st7 <- nodal.varY4

taler (rewrite "total-order?")
Itovrit51_ Icing tottl.order?,
thls 8iwpllfle8 to=
ordered?.inssrt.2.2 :

ardered?(lasert(xt ?, s*ode$_vu !el)

[-3] (FlXtILL (s: T)=
0taler od?(nodel.vLr !S)
INPLIF3 ordered?(taeert(x, aode2.rartS)))

[-4] checkalI((LAI(BD4 (y: T): y <- nodal.vatS4), nodal.raftS)
[-el checkallf(LANBDA (y= T): nodal.re.J4 <= 7), nodal_verSe)
[-63 order ed? (nodel.vLr t$)
[-7] ordered? (nodeS.veer t4)

| .......

[1] nodal-varY4 <= x_?
(3] checkall((LAIqJD& (7: Y): nodal.tar!4 <- y),

lasers (x l?, noda3_var _@))

(3] s_7 <= sodel.var_4

hle? (quartS?)
Fo_d sabot it:ties:

y |eta ztT,
S |eta sodel.varP4,
|nstentiattnJ quint/fled vtrtableeo
thl8 eilq)llflee to:

ordorodY.insort .2.2 :

4-1) nodal.v_r14 <- xl7 OR :t7 <= uodei.vtr_4
[-2] orderod?(laeort(z_ 7, node$_var t el)
E-3] (FOItALL (xz T):

arderod?(madel_re_r !3)
]IIPLIES orderod?(lnsart(z, nodal_vatS)))

[-43 ¢hockall((LAMBDA 47: T): y <= nodal_varY4), nodal.yetiS)
[-6] checkall((LANBD_ (7: 1): sodaS_vat!4 <= y), u6del_vxrt_)
[-el orders4? (nodal-vat t S)
[-7] ordered? (nodeS.vet t4)

i .......
[1] sode|.vtrf4 <- z_7
[3] checksII((L_NBDA (7: T): nodal.varY4 <- 7),

insert (x _7, aode_-vtr _4))

[3] st? <= nodol_var!4

hla? (propS)
By proposttiosal elupltf|catiolt,

This completes the preo_ of ardarod?.l:sert.2.2.

This couplatee the proof of orderod?.l_sert.2.

Q.E.D.

Save the nev proo_? (Yes or _o) 7as
gould yes like s brief printout of the l_oof? (Yes or Be) yes
ordered?.tnsert :

m.......

{_) (FOR_LL (x: T), (As blesT.tree):
ordered?(A) II(PLII_ ordared?(lnsert(z, J)))

ludgctSng o_ i,
which yields 2 s_t_oale=

ordared?_tssert.i =

J......

41) (FU_tLL (x: 7): orderod?(laaf) INPLZ_S ardored?(Insert(x, leaf)))

For the top qxtntifler |a l, re istrodsce $koleu congteJ_t8_ (sill
Applying disjunctive elmplltlcatlon,
Ravrltln| uslsg lasers,

Ra_rltln 8 uin 8 ordered?.

lnvokin_ decision procedures,
Installin8 utoumtic ravrites:

bint_y_tree_rec[T, boo1),
Splittin| con_usctions,
rhtcb 7telds 2 s_bsoels:

ordared?.lneert.l.i :

4-t} ordered?(laaf)
| .......

41) checktll((L_J_BD4 (_= T): _ <" sills _eaf)

Rerritin| ulna checkall,

This co,plates the J_roof of ordered?.tnaert.l.l.

ordere_?_|nsert.l.2

4-1} erdared?(|eat)

41) checktll((LJJql"DA (y: 7): z_3 <= y), lolL/)

Re_ritia| :elnJ checkall,
This couplatae the proo£ of ordarad?.tneert.l.2.
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orderod?olueort .2

| .......

41} (FORILL (nodal.vat: T), (node2ovar: btsezT-tree_, i :

(nodeS.vat: binary_tree) :=

(FOY_LL (x : T) :

ordsrodT(=ods2-vsr) INPLIES urderodT(tusert(n, uods2-vnr)))

AJD

(FOIU, LL (=: T):

ordered?(uode$_ve_r)

IMPLIES orderodT(lneert(so nodeS_ear)))

IHPLIES

(FOIUILL (u: Y)1

ordered?(uode(nodsl_utr, nods2_ver, uode$_ver))

IHPLIE5

urdsrodY(tueert(x ° node(nodal-vat,

uode2_var,

aods3.sar)))))

For the top quantifier lu l, we tutroduce |lkolem coustsmt8:

(nodet.sur_4 node2.var!S node$.vtr+6)

App17tn 8 disjunctive eiu_lificotion,

For the top qusmtifior tu l, we introduce Skoleu coustuts: (x!7)

Xevrttiu| uaiu| ordoredY,

ApplTtu | disjunctive siuplifictttou,

]tevritiu| using insert,

Llfttug IF-coudittous to the Sup level,

B F propositional |inplificntion,

which yields 2 subKoal8:

ordered%inner, f2.2 =

|-i) (t_tltt(x:T):
orderod?(uode2_varfS)

IHPLI_ orderedT(insart(x, nods2_ver!S)))

urdored?(nods$.varle)

IMPLIS_t orderodT(iusert(z, nudeS_Tar!e))) _: _

_-3) checkall((LIBDl (7= T)= 7 <" nodnf-vtr!4), node2_var!S)

_-4} chncknll((LinD4 (7: T)_ nodal.sir!4 <= y_-, node3.enrt_

_-6} ordered? (node2-v&r ! $)

| .......

_2} ordsrod?(node(uodsl-var!4,

node2_var|S,

tnsert(n_7, node$.vur!O)))

ltewrttin| u'ing ordered?,

lnetauttattng quantified variables,

B7 propositional siupliftcatlan,

P_eritiug ustug orderodT_lnsert-step, =_ =_-_ =_ _ : .... ::

Addtu K tJpe constraints for obt.< u,

Rsgritiug ustnJ total.order7,

Instsuttattng quutiftud variables,

By propositiOnai si_piiftcatian,

This completes the proof of ordsrodY_tnJnrt.2.2.

O.E.n.
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orderodT.innsrt.2.1 |

4-1}

q-s}

{-4)
{-s}

-_}

ut7 <- uodsl.rarf4

(FO_ALL (n: T): ....

urdsred?(nods2.var|S)

|NPLIES ordorodT(iusart(s, uo_e2_var!S)))

(FOAILL (n: T):

ordered?(nodeS.var_e) .............

INPLIES orderod#(tusort(s, nodeS.sariS)))

cbIckalI((LAHBDI (7: T): y <= uodel-varf4), uods_.vnr!5)

cbeckall((LAK_D_ (7: T): uodsl.var!4 <= y), uods$__ar!8)

ordorsdT(uode_.ver_S)

ordorsdT(sodeS.var_6)

I .......

_1} orderod?(nods(nodei-var!4,
insert(u!7, uods2.vur!S),

nodeS_vurY6))

_svrltiug uslnl ordsrod?,

Instautlatlu I quutl/Isd variables,

By propositional slupllflcatlon,

Reuritiu| sits| urdor_lT.tu|ort_stop,

This couplote8 the proof ot ordsred_.iueart.2.1_

Notes on the Language

The core logic ts a simply typed higher-order

logic.

S pecifj+cations are §tru_cturedinto Dara_metric +

theories, .................
=

Types can be parameters.

Assumptions can be used to constrain the

parameters.

Set-like predicate subtypes can be defined. :

These make the domains and ranges of

operations explicit.

Theorem proving is employed to carry out

typechecking. _.... ; _ _ ....

Automatic facilitiy for generating abstract

datatype theories. - .....

15
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Notes on the Proof checker

Sequent representation for proof goals.

Backwards proof construction by applying

red uctions.

Heavy use of powerful decision procedures for

equality and inequality.

Powerful primitive inference steps.

Roughly twenty such steps.

Strategy mechanism for encapsulating proof

patterns.

Ability to save and rerun proofs and partial

proofs, and display proofs.

Conclusions

PVS exploits the synergy between language and

inference.

The combination of powerful inference steps:

decision procedures, rewriting, propositional

simplification, etc., makes it effective to develop

proofs that are both certified and convincing.

Future goals:

• To enhance the language to further exploit

the inference capabilities

• To generate readable proof outlines

• To make proofs robust and easier to

maintain

16 17
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Logical Foundations of Computing

over the Floating Point Reals

Richard Platek
Odyssey Research Associates, Inc.
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Logical FoundationS of
Computations over the Reals

Richard Platek

Odyssey Research Associates
ORA

12August 1992

NASA FM Workshop

O O RA Corp. 1992

SL-0046

i
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Two ORA Technical Reports

"Verification of Numerical Programs Using Penelope"

"Denotational Semantics of Numerical Programs"

(DORA Corp, 1992 _1_"_/_
SL-0046 2

Basic Problem

What does it mean to say that a given program "computes" a real valued
x

function such as sine x or e when it never"really does?

Classical answer:

The program computes an approximation which is "sufficiently accurate"

But what does that mean?

J
O ORA Corp, 1992

SL-0046
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Two Fundamental Problem Areas

£3 Scientific Computations

simulations, cacluation of engineering solutions, numerical experiments to
explore theories, "number crunching" as part of experiments

correctness is vital for decision making

£3 Embedded Computations

computers as part of coninuous systems

sense-compute-activate

O ORA Corp, 1992 A_'_"}/'_
SL-0046 4

Botton Up Interpretation

We reason at the level of the CPU and Floating Point processor so that we can
calculate tight error bounds and we use numerical analysis techniques to
estimate the accuracy of the computation.

Perfectly fine, but too concrete

A. Numerical Programs are not written in machine language or assembler.
They are written in higher order languages like Fortran, C, Ada. The
concrete analysis is not portable across CPU's.

B. The concrete analysis is not portable across FPP's. We should reason in
terms of the IEEE floating point standard or the Brown model.

In particular, our specs and proofs should be independent of the word length of
the machine reals except in so far as the word length is knowable at the
programming language level (e.g., Ada's float'small)

J
© ORA Corp, 1992

SL-0046
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Verifying floating point computations

O Algebraic properties of floating point operations are a mess; and detailed
descriptions are highly implementation dependent.

O Little automated support exists.

O We are incorporating support for both quantitative and qualitative error
analysis into Penelope.

This talk concerns qualitative error analysis.

O O RA Corp, 1992 _ll_'_/,'_
SL-0046 6

Sources of error

o Roundoff error

O (Mathematical) Truncation error

O Implementation strategies (modeled by non-determinism)

J
O ORA Corp, 1992

SL-0046
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Example of Compiler Implementation Strategies

In both C and Ada the statements

X := y .I, Z;

if x = y * z

may set w to either o or 1 !!!

then w := 0 else

w := 1 end;

© ORA Corp. 1992
SL-0046

Qualitative error analysis

Intuitively: prove programs under the assumption that various sources of error
are present but "negligible"

Not equivalent to assuming that error is non-existent

J

166
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Qualitative analysis of roundoff error: asymptotic
correctness

Mathematical model via limits

If a program is run on increasingly accurate machines, then its answer
approaches the specified result in the limit.

Mathematical model via algebra

Use a model of "approximate reasoning."

The algebraic model is easier to use

i'
@ ORA Corp, 1992
SL-0046 10

Algebra for approximate reasoning

Introduce additional predicates on

numbers"

x is close to y

x is not close to y

x<y or x is close to y

x < y and x is not close to y

Relations to standard operations

the

O ORA Corp, 199_
SL-0046 11
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Substitution in Approximate Reasoning

If f is continuous, x _ y =:_ f(x) ,_ f(y)

Therefore,

x '_ x 1 and Y _ Yl _ x + y "_ xl + Yl

But comparisons are not continous

x_y and x<z does not imply y<z

© ORA Corp, 1992SL-0046 12

Algebra of approximate reasoning

Mechanical translation of (many) facts of ordinary algebra tO facts of

approximate algebra.

For example"

(x Jr-i)2 > x

translates to

(x + 1)2 _ x

J

© ORA Corp, 1992
SL-0046 13
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Modeling Ada floating point operations

Introduce specification predicate for each basic operation

t-p/us(=, y, z):

z iS a possible result of evaluating x + y

Sample property:

Fplus(z, tJ, z) =_ z _ x Jr y

fie(x, y, b):

b is a possible result of evaluating x <= y

Sample properties:

fie(x, y, true) _ x < y

fie(=, y,.false) _ z > y
,J

© ORA Corp, 1992
SL-0046 14

Example specification and proof

function mysqrt (a, small : in float) return float;

should compute the square root of a to within sma i 1

O ORA Corp. 1992

St-0046 15
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Naive specification Ofmysqrt

IN a > 0.0 and small > 0.0

KETUKN z SUCH THAT Iz2 - aI _< small

© eRA Corp. 1992
SL-0046 16

71 _ J I

Amended specification of my s q r t

IN a __>0.0 and small _ 0.0

RETURNz SUCHTHAT12- al< smal_

O eRA Corp, 1992 _-_
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O ORA Corp, 1992

SL-0046

Calculation will use Newton's method

For any a> O,

where

v/a -- limiti__ooXi

xo -" a+l

zi+l - 1/2(zi + a/z,)

IB

J

Code for mysqrt

function mysqrt (...) is

x : float;

begin

if (a <= small) then

return 0.0;

end if;

x:=a+l.O;

while (x*x-a >= small)

x := (x+(a/x))/2.0;

end loop;

return x;

end mysqrt;

loop

Loop invariant annotation:

small, x,a,(x 2 -- a) _ 0.0

O ORA Corp, 1992
SL-0046 19
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Proving termination of the loop

Proving termination of the loop

Loop bound annotation:

loop bound x 2- a

contraction 1/4

lower bound small

© ORA Corp, 1992

SL-0046 2O

function sqrt

is

begin

return mysqrt

Accurate Square Root

(a: = in float) return float

(a, float'small);

end;

© ORA Corp, 1992

SL-0046 21
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Embedded Systems

Want to be able to reason about computer controlled real world systems.
Want to know what the system does in real space/time.

The total syste can be described by logico-differential equations.

J
© ORA Corp, 1992 _"}/'_

SL-0046 22

Example

State variables

x(t : Real) : Real

y(k : Int) : Int

Transition Relations

= f(x(t), y(_))

y(k+l) = g (x(1), y(k))

,tt = max integer < t

O ORA Corp. 1992

SL-0046 23
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Formal Safety Analysis

Nancy Leveson
University of California at Irvine
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The FM9001

Warren Hunt
Computational Logic, Inc.

PRF,GEDING PAG_EB_'_I',,_Ki',rOT F|LP_._'_:D
199



f

"t_

i

I

I
f

i ".,., _ I:::

01_
_0.,-

i

200



f

++

! ++++_!- ++++,_ ...+.+++-_..+
P_ _.-+ .+ ...

r- >,o ._.m_' .o ._,

• +, . ,,<_ •
J

i

f

J

i
;

Im
201



f

J

r

_=_

>._, "_ ®,_

o "o _ ._o_

_ o _ _

__ . __ • • _ •
I.

202



f

+i
| ,.+.+_,,, -m _ (...:

• -0 -.+!
,_ o §

+,.+++=°°+._ + ._-+ _.++_=

LL _C I_ LL. C

J

Im
f

,:,+

=,

n

-I:

_i-

o I -

o

-!- -I_t
t+1

-12 "--V'__.___ 9 __. _

-IE] -I_

i!
_!itfill

.+,_+-,+I

++++++'',',+]++++i+._lj_,+

Ill+lip+.:+++=++ =

++++
+,i+,lJ++l!i,,++,

li|ll|++++m++m;m

-h

J

|

203



f

f

2

E
c_

1 TTTT

_J
t

i

204

J

1



f _

0
mini

Q.
,Ira

IJ.
q)

.C
I-

"OOiOIO_O_010|OIC_C_O_O,O_
OtOlO;OiOIOtOiO|O_O|O_OiO_

OlOlOlOlOlOlOl01C_O, OlO=O,
010101 O'OtO|
0|010_
ololo_
olo_oI
OlOlO!
0|0101

OlOlOI

OlOlOzOJOsOlOiOzC_OlOlOfO!
OlOiOmOzO_O_O|OlOZO_OlOiO!
O_O|OlO_O_OlO_OIC_OlOlOiO

_,. 0t01!0_

i_ o.o.o,010_0|
0_0_0_

c_c_o_
0 0_0_0_

Z • .J X '_ Z • • W _ 0 II 'I[

- !
: i!,_illi

J

|

n

i
Jl

i|
205



f

_ •

,
l !

J

|

J
im

11

J

f

+ !

i
+! + + ,

i _ - °

• • • • nnn c

|

!

im



f

z_._° E ®

. .
_ =,__ _.-=_

"_. e- _ _

.-_ _..
o,

J

Im
f

•- . _

-_°
_E _ 0 _ _

J

I

Im
207



f

f

_o,
C _

i!_. RI---ill-- ,
J

.gq

J

208



f

o

|

J

i

Im
f

J

i

Im
209



210



f

oo

I--
J

i

II

J

I

Im
211



141

"§_ ®

• _= _--_

08_ ,,u.m
J

|

212



f

ZI:I!:"iiiiiiiiiOOOOOO0 oo00

||JJJJ| JJt_ |D |m |

' ' '!! !! a

J

i

II
f

-- _ _,
g= g

o_ z

i. _ "o

IIIIIIII

llIlllll

_I_

213



F

o.o =_

_ _ _ _ _.__

°°,-.:_ .__ _

I

Im
214



Derivational Techniques for Hardware

Steve Johnson
Indiana University

215



Design Derivation*

Steven D. Johnson

and

Bhaskar Bose

Computer Science Department

|luliana University

---- |}_slll n derivat|ow

_rmd|_cd metkod*

e_.dudhm, d_ivstlee. *lc

Tl_t DDD aylt@m

Slntu

A=p,'ct* or dedp =lgcbr=

I_xptr|me_(atloa

FMA_= de,iv.ti_

FMgflOI dcwi_llon

Co_rlu.lom¢

Mult;modd fe_*mi_

_,_u. fc_m4d .ytt_nN

_| _ I4SF MIPN.7114_', NOT il

=llllp. ¢=e_ i1_ tm

w,l,_n, A_ i., im
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Design derivation

formal sUstem

• a long.age, r.l_ of syntax

• tran._for.mlions, nll_.'s¢,i"r,'a._.fing

formalization

• representing design.q as expre_ions

• representing de,igning _ an inference process

For example, verification

• proof d an implementation, E [= I D S

• derhration of an implementation, S =_ I

[rA(., _,0 _- (.. _) I

rA(.,=, 0 = (., e} I
where 1

] , = (°_ +ab)_+(._+ =_)d
L e=.=+(,;4'__l

(., b,.) _- (',")1
,r_ J

d=e*& J

rAl.,_,d _ (.,_'l ]
_e_ |

(=,_,)=/IA(,,O|
='+_' I

n_(.,_) _ (..d l
=&ere |

. = °i+_m_ I
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vl, |1, }.21

AI, I t._t

:)Io 2.2|, 2 _l.3

_ellmr

vl, 21, _14.1

^i, 2A2

DZ, $4.L, 243
excl, mkJdle

^B, 1.8, 1.5. l.I

^!, I.'/

I, 3, 2?

idemue

v£,il

vl_, 4, I

inmme

VI, 45,44 I

Al, 44.2

DI, 44.1,443

lutlm_

Vi, 43, 46,1

AI, 41J_l

_1, 4.11.1, 4.ll3

^E. 41, 4S, 4.?

:_1, 4.1, 4.0

^£. l. 3, 5

Deduction and Derivation...

o haw a lot in common

o reflect common modes of rcamning

o involve "proof engineering"

o should be integrated

S =.% S, (¢0
=% S_ (C_)
•,.% S3 (Ca)

I. E

2. I

3. It

4. 1_

[

k. I,

$

|llllyfl.

|Jlllnl.

tilt. k

Digital Design Derivation system
(Dl)D)

• An interactive transformation system based on

first-order' functional expressions

• Specialized for digital system derivation

DI)D a.q a formal system

• A core of .-ecure algebra

o Extensibility

o Derivation management

Modes of expression

_vlot

P

D
"t_i_ dau"

S
m
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ml/m t..l_ ii.

Single Pulser

"SP penemtes a unit pulse for every pwlse ne_elved"

ml/m t.,i.d Ul.

(YO

1/o

define ($0 In Out) =

(it (- 0 (? In))

(so (> Zn) (_ 0 Out))
(el (> In) (! 0 Out)))

define (S1 In Out) t

(it(-o (?In))
(so (>Za) (_ t out))
(st (_ Zn) (t o out)))

A

define (SP In) - Out

.where

I - (cons 0 In)

Dut " (ands I (nots In))

In = (0, O, 1, I, 1, O, O, 0,... )

x = (o,o,o,i, 1,1, o,o .... )

Out = {0, O, O, O, O, 1, O, 0,...)

B

ID 1,,_ l.,r,_ ii, i=_
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Behavior to structure:

define (FAC n) = (F n 1)

vhers

(F u v) m (if (zeroT u)

(F (dcr n) (._py u v)))

define (FACsystem n) - (list V R)

vhere

V - (coat n (Dee,U))
V - (cons t (MPY U V))

a - (ZERO? U)



FM8501 specification [Hunt]

{d*_a goIq {?o|-f|l* _tl-m I-fiq v-{laI l-fill i-fill lit)

(If (llll_p 1aS)

(11l$ zq-ftle _i-_U a-flaG ,-_lq I-flq I-Ylq)

(tort (rq-_ || e-a_ia_- olw4 -t-_ll- lm_t

Tll-ltll r_l-m c-_lq v-na_ I-YlI 8 u-YlsB)
(reel-_-itier-ell-_lto

Tq-ille r_l-_ c-YlaJ ,-flq s-_l_ I°YlI I)

(ip4*ll-v

(i-_aoa*l {_*A_-Ilatr_cffil_ Tq-tlll reel-.J)l

a-flq

(¢ (_-ell-cv*r_llta rq-_lle TNI'WO ¢'tle¢}))

('_*tJ"

(t-_c-a_ (cl_e*l-iMt_¢_la yq-flle y*ll-m))

v-tlq
(_ (t_-*II-CV-T*IIIII T_toflle rml-m I-tl_l))

(_-Ze-lCt (cl_ell-lmeS_¢tla Fq-_ll* •eli-roD

I-tl_

(llrop (t_-Io-lal (_ {t_-all-cv-ru_lU

• q-ill• r_l-_ c-flq))))l'

(,_,t,o,

(t-zz-sal (cmrrn_-lla_r_citm _q-_lle Yaat-_a))

i-ilq

(mq*tl_ {tm-io-ta (iv (tm-lle-zv-yoeal_e

T_o_lle Teal-_a a-_lal|))3)

(car ll_l))l

B

ml/to _._ t_ m

Serialization

dofine (FACsIst*I n) - (list V R)

vhere

U = (con* n (DCRU))

V " (con* 1 (HPY U V))

R - (ZEXO? U)

define (FAC n) - (FOn i)

where

(FO u v) - (it (zero? u)

V

(rlu (spy u v)))

(Fiu v) - (FO (dcr u) v)

FM8501 implementation [Hunt]
(dell Itl-_l_in (at reed mille it•el re•el _-stoTe Iala-ovt

rmi-fll* _iiy-ell c-ll. i ,-fl* l 2-_1•¢ i-_i*g

a r_ b-rq I l In I l_q r el

_-giIeI-I_-MOS_ 7 oraclm}

(if (u|lalp eYl¢li)

Ill., ur _ wit. it.el re.at It-liars Ilia-It lq-lil.

edit-It ¢-fl t .-il I l-fl I i-ill a-Ill t-rl t'I. I

vtalall veil-sea II_-lliCt-#q-ilat_)

(lli-II_Igi {u_r e4r I-rq dll©i lilit l@-liOli)

laid ill I-Yq)

{_vll...r l-Yq ll-ilOYl}

{lllli I¢iY oYlili})

(riiel (lii o_l¢ll))

IlO-ilOYi 1i-II0FI I-il• I .-Sia I S-YI. i l-Yl l

l-iq Ill)

{i.t.-e_l I.li-#ii i-it I i-_, I i-Ylq 1-,, I ,.r)

(,q-tile rq-lil, dlil-gll I-lq., 10-.,0I,

re4e_)

{eldi-_el eld•-Hl •el*ill. l-_a i ir •lilt)

lc-¢l t l-fll I . _e I I_ q t-_q .al)

I.-tlq ,-11_8 I-_ol i'•.l I'flii I'_el lit)

(i-ill I i-ill I i-ll i br N i-lie I l-re I lii)

(l-fls i t-flail l-re I t.-vq ¢-fla I I-r_ ill

(.-lq .-lq ,lml-! •el-ilia I-_. I ..r r.l.ll

tbrql t.r, I ,llaal-,I if-fill I-ill .,y •..*tl

(I-r_l l-r,l viii•l-! earl

m_-lallh_l-illlO _

(drool (c.i eric|e))

(•_It (ill lyacl•))}

{rmal_ yli|Oue_ _eld lYlte s4ldr-out data-all

_ma_+vetc_-il slaty
(dteck (c_ areola))

[iiall [cur oracle)})

[leici-do_ ram m_lte (d_set (car eymel•))
_ia-_l M_r-eut )

[ed'r _lclil

Ill
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Block diagram of BIGmachine

Superimposed architectures

Architecture derived from SOFT

:_ .

Detail of a local factorization

lartrt¢ _ _1. m
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Physical organization of FM8501

e

o

Structural manipulation

Expcrimcnts with FM8501/2

i'--I

L_k l_¢h4ma" I

g

0

Procedural abstraction

define (FAC n) - (F n 1)

vhere

(F u v) " (if (zero? u)

v

(F (dcr u) (HPY u v)))

define (HPY n m) = (H n m O)

vhere

(H v x y) - (if (zero? v)

Y

(if (even? v)

(M (/2 v) x C.2 y))

(H (12 v) x (+ (*2 y) x))))
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8

0

mtr_ J_ _L

]neorporating procedures

define (FAC n) - (F n i O)

whets

(_ u v v z) - (if (zero? n)

v

(M U V V U))

(H u v v z) - (it (zoro? u)

(F (dcr x) v 0 #)

(if (even? u)

(M (/2 u) v (*2 v) z)
(M (/2 u) v (+ (.2 v) v) x)))

o

Ib_/_ _ tL m

Sequential Decomposition

u,_/l

M

W

(FO u v m dm) =

(it (zero? u)

v

(cons (list ! u v)

(Fiu v (> m) (> dm))))

(rt u v m d m) -

(coal (list 0 u v)

(it (hi? (? dm))

(FO (dcr u) (? m) (> a) (> dlm))

(r! n v (> m) (> da))))

Design derivation

Construction of an implementation by equivalence

preserving transformations.

Eo_Ej_r2_ ..- _G

malntAin!ng the global view

_) making local transformations

(]) mt*r_lane design

0 no "complete" algebra

0 fixes "equi_lcnce"

0 iwltil_its cleverness

mlfm Aq._ it

Interactive verification
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Results of Workshop Survey

Each participant at the workshop was asked to complete a detailed survey. 1 Fifty-three people returned

the survey; this section presents the results.
For each question asked on the survey, the specific question is reproduced and the answers to the question

are tabulated below. If a person circled multiple answers to a question for which only one answer was

expected, the results were weighted. For example, in response to question 2, one Formal methods developer
circled both b and c. This was tabulated as 0.5 for b and 0.5 for ¢.

Totals or averages are given where appropriate. Not every person answered every question on the survey,

so the totals for different questions may vary.

1. What is the nature of your organization?
a. University b. Formal methods developer

c. Government d. Aerospace industry

Question 1
a b c d e

Industry 0 0 0 22 6
Government 0 0 14 0 0

University 2 0 0 0 0

FM Developers 0 9 0 0 0

Note: Six people did not believe that the four listed choices accurately described the nature of their

organization. The specific answers given were: transportation, railway transportation, non-profit
lt&D org, industry/coamercial, othar, and don't imow. For the purpose of recording the answers, these

6 surveys are grouped with Industry.

2, What is your primary job function?

a. Basic research b. Applied research

d. Hanagenent

c. Product development
e. Other

Question 2
a b c d e

Industry 1 17 5 2 3
Government 1 5 0 4 3

University 1 1 0 0 0

FM Developers 3 1.5 0.5 4 0
Totals 6 24.5 5.5 10 6

Please rate your understanding of formal methods theory and practice:

b. Somewhat fmailiar c. gnowledgable

3.

e. Expert

Question 3
a b c d e

Industry 8 10 6 4 0
Government 6 4 3 0 1

University 0 0 0 1 1

FM Developers 0 0 0 1 8
Totals 14 14 9 6 10

a. Wovico

d. Considerable

1NASA Langley personnel involved in planning and conducting the workshop did not fill out &survey.
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Note: One of the goals of the workshop was to attract people with widely varying understanding of

formal methods. These numbers suggest that this goal was met.

4. What is the general level of awareness of formal methods within your organization?
a. None b. Xinimal ¢. Sparse
d. Moderate e. Considerable

Question 4
a h c

Industry 7 13 4
Government 4 8 1

University 0 0 0

FM Developers 0 0 I
Totals 11 21 6

d e

I 3

0 1
2 0

0 8

3 12

6. Before attending this workshop, how gould you have rated the state-of-the-art of

formal methods in terms of its potential for iamediate application?

a. Not usable b. Needs more time ¢. Nearly ready

d. Ready now e. Has boon ready

Question 5
a b c d e

Industry 4 16 4 3 1
Government 2 5 4 1 1

University 0 1 1 0 0

FM Developers 0 0 6 1 1
Totals 6 22 15 5 3

Note: Three FMdevelopers, one who answered d and two who answered c augmented their responses

with the comment"for some applications."

6. low that you've attended this workshop, hoe would you rate the state-of-the-art of
formal methods in terms of its potential for immediate application?
a. lot usable

d. Ready now

b, leeds more time

e. Has been ready
c. learly ready

Question 6
a b c d e

Industry 1 16 8 3 0
Government 0 4 6 2 0

University 0 0 2 0 0

FM Developers 0 0 7 1 1
Totals 1 20 23 6 1

Note I: See note for Question 5.
Note _: The results to this question demonstrate that the workshop did alter some people's perceptions

of the state-of-the-art. Particularly interesting is that before the workshop, the perception of the state of

the art by nine people was at one or the other extreme, but after the workshop, the number of people at one
or the other extreme was reduced to two.
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7, Please rate the extent to

organization:
a. |over

d. Occasionally

uhich fornal nethods is practiced today within your

b. Selden c. Sporadically
e. Often

Question 7
a h c d e

Industry 15 9 2 1 1
Government 9 3 0 2 0

University 0 0 0 1 1

FM Developers 1 0 2 1 5
Totals 25 12 4 5 7

Note: One FM developer answered a, and added the comment Uon our own systems."

8, When do you think that fornal nethods rill be used often in your conpany?

a. 0-2 years b. 2-5 years c. 5-10 years

d. 10-20 years e. Never

Question 8
a b c d e

Industry 5 7 12 3 1
Government 4 3 3 2 0

University 1 0 1 0 0

FM Developers 5 2 1 0 0
Totals 15 12 17 5 1

Note: An individuM from industry answered c with the comment "unless required by customers
earlier."

9. Hog difficult do you feel

a. Extraely
d. Sonowhat

it is to put formal nethods into practice?

b. Very c. Moderately
o. None at all

Question 9
a h c d e

Industry 7 9 12 0 0
Government 2 ? 4 1 0

University 0 1 1 0 0
FM Developers 2 3 4 0 0
Totals 11 20 21 1 0

10. 1re you personally inclined to apply formal methods on a design project in the near
future?

a. Strongly inclined b. Moderately inclined c. Indifferent

d. |or inclined e. Would quit first
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ll.

Question 10
a b c d e

Industry 13 9 1 5 0
Government 8 6 0 0 0

University 2 0 0 0 0

FM Developers 6 3 0 0 0
Totals 29 18 1 5 0

How veil prepaxedare the professionals in your organization through education and
previous training to absorb the technology of formal methods?

a. Minimally b. Somewhat c. £dequately

d. Receptive e. Well prepared

Question 11
a b c d e

Industry 15 8 3 0 2
Government 7 ? 0 0 0

University 0 1 1 0 0
FM Developers I 0 0 1 7

Totals 23 16 4 1 9

12. In your organization, which of the following obstacles exist that inhibit or
prevent the use of formal methods? (chock all that apply)

___ Management believes it is impractical

.__ Engineering staff believes it is impractical

.__ Lack of sufficient knowledge about formal methods

.__ Lack of required skills

___ Up-front cost too high

.__ Have had negative experiences in the past
___ Do not believe it is useful

___ Be obstacles exist

(Mgmt)
(E g)

(sk tV.
(Co,t)
(Neg)
CNot) ........

.........

Question 12

Mgmt En8 Know Skill Cost New Not None

Industry 10 13 24 20 10 4 6 2
Government 5 4 13 11 6 1 4 0

University 0 0 1 0 0 2 0 0

FM Developers 1 2 1 1 3 0 0 4
Totals 16 19 39 32 19 7 10 6

Note: An industry representative checked He obstacles exist, but added the comment "except

funding."

13. How would you rate the potential benefits of using formal methods?

a. Negligible b. Somewhat useful c. Moderately useful

d. Helpful e. Significant
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Question 13
a b c d e

Industry 0 5 1 4 18
Government 0 0 1 4 9

University 0 0 0 1 1
FM Developers 0 0 1 3 5
Totals 0 5 3 12 33

Note: A person from industry circled e, but added the caveat, "if it does all that is advertised."

14. Hog gould you rate the costs of formal methods technology relative to the costs of

current practice?

a. Excessively higher
d. Somewhat loser

b. Somewhat higher
e. Much loser

c. Equivalent

Question 14
a b c d e

Industry 4 13 5 4 2
Government 2 8 0 0.5 1.5

University 0 2 0 0 0
FM Developers 0 2 5 0 0
Totals 6 25 10 4.5 3.5

Note J: A government representative circled • and added "over system life cycle."
Note _: An industry person circled a, with the additional comment "don' t see lq_ replacing anything

--- it only adds confidence and cost to date."

15.

Note:

Bow aggressively eould you recommend your management pursue the use of formal

methods technology?

a. Forget it
b. Keep up eith developments

c. lttempt small pilot projects

d. £ttempt larger applications
o. Full speed ahead

Question 15
a b c d e

Industry 0 6 20 2 0
Government 0 0.5 10.5 2 1

University 0 0 2 0 0

FM Developers 0 0.5 2 4.5 1
Totals 0 ? 34.5 8.5 2

One industry representative answered c and added the comment "to completion I"

16. How much empirical evidence on the benefits of formal methods do you feel is

available for managers to make informed decilions regarding its use?

a. Insufficient b. Nearly sufficient c. £dequate

d. More than adequate e. Plentiful
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Question 16
a b c d e

Industry 22 2 3 0 1
Government 8 2 3 0 0

University 1 0 1 0 0
FM Developers 4 3 0 0 2
Totals 35 7 7 0 3

17. Rate the importance of reusable formal verifications such as verified clock

synchronization circuits and verified softvare modules.

a. |one at all b. Someghat c. Moderately
d. Very e. Extremely

Question 17
a b c d e

Industry 2 2 7 6 10
Government 0 5 4 3 0

University 0 0 0 1 1

FM Developers 0 0 0 4 4
Totals 2 7 11 14 15

18. Rate the importance of generic _ools (such as, semi-automatic theorem provers,

specification language typecheckers) that can be applied to softeare/hardeare

development ...... =, ................
a. gone at all b. Somewhat c. Moderately
d. Very e. Extremely

Question 18
a b c d e

Industry 0 2 5 I1 10
Government 0 1 4 6 3

University 0 0 0 0 2

FM Developers 0 0 2 2 5
Totals 0 3 11 19 20

19. Rate the importance of the capability of formal methods to produce trusteorthy
solutions of difficult problems i_ computer science.

a. Jone at all b. Someehat c. Moderately
d. Very o. _tremeiy

k

Question 19
a b c d e

Industry 1 3 5 12 7
Government 0 1 4 4 5

University 0 1 0 1 0
FM Developers 0 0 1 2 6

Totals 1 5 10 19 18
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Note: An industryperson wrote: "(a) who cares (practically) about CS? (c) for real problems.

We need trustworthy solutions to real problems:"

20. Where in the life-cycle do you feel formal methods can be applied most cost-

effectively?

a. Requirements

d. Zmplementation

b. High-level design
e. Maintenance

c. Detailed design

Question 20
a b c d e

Industry 15.5 8 3.5 0.5 0.5
Government 9.33 2.83 1.33 0.5 0

University 0.45 0.45 0.45 0.45 0.20

FM Developers 1.67 5.67 0.33 0 0.33
Totals 26.95 16.95 5.61 1.45 1.03

21. Where in the life-cycle do you feel formal methods can yield the most significant

benefits, irrespective of cost?

a. Requirements b. High-level design c. Detailed design

d. Implementation e. Maintenance

Question 21
a b c d e

Industry 20.33 2.83 3.33 0 0.5
Government 9.33 1.83 0.83 0 0

University 1.33 0.33 0.33 0 0
FM Developers 1.5 1.5 3 1 1
Totals 32.5 6.5 4.5 1 1.5

22. How long does it take to
a. Less than 2 weeks

d. 6 months to I year

become proficient in formal methods?
b. 2 weeks to I month c. I to 6 months

e. I to 5 years

Question 22
a h c d e

Industry 0 0 2 16 9
Government 0 0 1 5 6

University 0 0 0 0 2

FM Developers 0 0 1 ? 0
Totals 0 0 4 28 17

Note 1: Two people, one from government and one from industry, said that the answer to this question

was "dependent on background."
Note g: A person from a university circled e, and annotated the answer with "or more."

23. b'hat is your opinion of the following statement: rrProficiency in formal methods
requires a high degree of mathematical sophistication." ?

a. Agree strongly b. 1grew c. Io opinion

d. Disagree e. Disagree strongly
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24.

Question 23
a b c d e

Industry 9 14 1 2 2
Government 5 6 1 1 0

University 0 1 0 1 0

FM Developers 0 6 0 2 0
Totals 14 27 2 6 2

Note: An industry representative circled a, but added, "but it shouldn't be the case!"

To each of the following areas assign a nulber from 1 to 8 to denote the importance

of the area. Use 1 to denote that the area is extremely important, and 5 to denote
that the area is not important at all, Please assign a 0 to any area about which

you have no opinion.
___ Basic modeling techniques
___ Code verification (especially for ada)

___ Education and training

___ Integrated verification systems

--- Mechanical theorem provers
Reusable deductive theories (libraries of definitions and theories)

--- Reusable, verified 8oftgare libraries

___ Special purpose verification tools (such as Spectool, DDD. k Penelope)

___ Specification languages

___ Worked examples

Question 24: Industry

0 1 2 3 4 5 I Avg.
Model. Tech. 3 ll 8 4 2 0

Code Verif. 4 10 5 6 3 0

Education 2 15 10 0 0 1

Int. Ver. Sys. 4 10 8 5 3 0
Mech. T. Prov. 4 2 11 7 4 0

R. Ded. Theo. 5 5 11 3 4 0
R. Soft. Lib. 2 7 11 3 5 0

Sp. Purp. Tool 5 0 7 14 2 0

Spec. Langs. 1 14 8 3 1 1

Examples 2 11 9 4 2 0

1.9
2.1

1.5
2.0

2.5

2.3
2.2

2.8

1.8

1.9

Question 24: Government

0 I 2 3 4 5 I Avg.
Model. Tech. 2 5 4 0 0 2 2.1

CodeVerif. 2 4 2 5 0 1 2.3

Education 0 6 0 5 0 2 2.4

Int. Ver. Sys. 3 0 2 4 2 1 3.2
Mech. T. Prov. 1 3 2 3 1 2 2.7
R. Ded. Theo. 2 1 2 4 3 1 3.1

R. Soft. Lib. 1 2 2 4 3 1 2.9

Sp. Purp. Tool 4 1 2 4 1 1 2.9

Spec. Langs. 1 4 3 2 1 2 2.5

Examples 1 6 2 2 0 2 2.2

230



\

Question 24" University
0 1 2 3 4 5

Model. Tech. ".... 1 i 0 0 0 0

CodeVerif. 0 0 0 0 0 0
Education 0 0 0 0 0 0

Int. Ver. Sys. 0 0 0 0 0 0
Mech. T. Prov. 0 0 0 0 0 0
R. Ded. Theo. 0 0 0 0 0 0

R. Soft. Lib. 0 0 0 0 0 0

Sp. Purl). Tool 0 0 0 0 0 0

Spec. Langs. 0 0 0 0 0 0

Examples 0 0 0 0 0 0

Avg.
1.0

...... --

Question 24: FM Developers

0 1 2 3 4 5 [ Avg.
Model. Tech. 0 6 2 1 0 0 1.4

CodeVerif. 0 3 2 2 1 1 2.4
Education 0 6 2 1 0 0 1.4

Int. Ver. Sys. 0 5 1 2 1 0 1.9
Mech. T. Prov. 0 3 3 2 1 0 2.1

R. Ded. Theo. 0 3 6 0 0 0 1.7

R. Soft.Lib. 0 4 2 4 0 0 2.0

Sp. Purp. Tool 0 3 2 1 3 0 2.4

Spec. Langs. 0 3 6 0 0 0 1.7

Examples 0 5 2 1 1 0 1.8

No_e 1: Answers of 0 were ignored in calculating the averages.
Nofe _: For a few respondents, the answers to this question seemed inconsistent with answers to other

questions. We suspect that some people may have failed to read the question carefully, and as a result reversed

the ordering (that is, used 5 to denote extreme importance and 1 to denote no importance); however, we
recorded their responses as given.

25. To each of the folloeing tools and techniques assign a number from 1 to
5 to denote your perception of the usefulness of the tool/technique. Use

1 to denote that you believe the tool/technique may be extremely useful,
and 5 to denote that you believe the tool/technique is useless. Please

assign a 0 to any tool/technique about which you have no opinion.

___ Boyer-Moore ___ DDD ___ EVES

___ HOL .__ Modelieation ___ |uprl

___ Penelope .__ PVS/Ehdm ___ Safety analysis

___ Spectool
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Question" 25: Industry _

0 1 2 3 4 5 Avg.

Boyer-Moore 9 1 4 10 3 1 2.9
HOL 8 1 7 6 5 1 2.9

Penelope 12 0 9 4 3 0 2.6

Spectool 16 0 6 4 2 0 2.7
DDD 19 0 2 4 3 0 3.1
Modelisation 14 5 2 3 2 2 2.6

PVS/Ehdm 5 6 10 5 1 1 2.2
EVES 20 0 3 3 1 1 3.0

Nupd 23 0 3 0 1 1 3.0
Safety Analysis 8 14 3 2 1 0 1.5

Question 25: Government

0 1 2 3 4 5 Avg.
Boyer-lVIoore 7 1 3 2 0 0 2.2
HOL 8 2 0 3 0 0 2.2

Penelope 11 1 1 0 0 0 1.5

Spectool 13 0 0 0 0 0 -
DDD 12 0 1 0 0 0 2.0

Modelisation 8 1 2 0 0 0 1.7

PVS/Ehdm 7 3 1 2 0 0 1.8
EVES 12 0 0 1 0 0 3.0

Nuprl 12 0 0 1 0 0 3.0

Safety Analysis 5 5 1 1 0 l 1.9

Question 25: University

0 1 2 3 4 5 [ Avg.
Boyer-Moore 0 1 I 0 0 0 1.7
HOL

Penelope

Spectool
DDD
Modelisation

PVS/Ehdm
EVES

0 0 2 0 0 0 2.0

1 0 1 0 0 0 2.0

1 0 1 0 0 0 2.0

I 0 1 0 0 0 2.0
2 0 0 0 0 0 -

0 2 0 0 0 0 1.0

0 0 1 1 0 0 2.5

2.0
4.0

Nuprl 0 0 2 0 0 0
Safety Analysis 1 0 0 0 1 0

Question 25: FM Developers

0 1 2 3 4 5 I Avg.
Boyer-Moore 0 0 5 1 0 0 2.2
HOL 0 0 3 2 2 0 2.9

Penelope 0 3 0 2 2 0 2.4

Spectool 1 3 0 3 0 0 2.0
DDD 2 0 1 3 0 1 3.2

Modelisation 3 I 1 1 I 0 2.5

PVS/Ehdm 0 I 5 I 0 0 2.0
EVES I 1 3 2 0 0 2.2

Nuprl 0 0 0 I 4 2 4.1

SafetyAnalysis 2 1 2 1 1 0 2.4
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Note: See the notes for Question 24.

26. How expressive should a formal language be?

a. Very expressive (such as g and VDH) b. To the level of hlgher-order logic
c. To the level of Ist order logic d. To the level of Prolog

e. To the level of propositional calculus

Question 26
a b c d e

Industry 14 6 2 1 0
Government 2 4 0 0 1

University 1 0.5 0.5 0 0

FM Developers 3 4 2 0 0
Totals 20 14.5 4.5 1 1

Note: Four people, one Hem industry and three Hem government, did not answer this question, but

wrote the following commentsinstead: "depends on application," "to understanding of user," "this

needs to be decid#d on the basis of the domain of application requirements," and "depends on
when it is used."

27. How important is it to have a specification language that can mimic the notation

typically employed in the problem domain?
a. None at all b. Somewhat c. Noderately

d. Very e. Extremely

Question 27
a b c d e

Industry 0 3 5 12 6
Government 0 2 3 2 5

University 0 0 0 1 1

FM Developers 0 0 3 4 2
Totals 0 5 11 19 14

Note I: A member of the government answered e, and included thecomment: "to be accepted by

the engineers and program managers."
Note g: Anothergovernmentrepresentative did not circle an answer, but wrote "I¢ must not necessarily

mimic but must be readable by experts in the problem domain."

28. Now important is the availability of powerful decision procedures in a theorem

prover (for example, decision procedures for linear arithmetic and propositional
calculus)?

a. None at all b. Somewhat c. Moderately

d. Very e. Extremely

Question 28
a b c d e

Industry 0 3 8 7 5
Government 0 1 3 3 2

University 0 0 1 1 0

FM Developers 0 0 1 2 6
Totals 0 4 13 13 13

i=j

j

!
|

233



29. To each of the following areas assign a number from 1 to 5 to denote your opinion
as to the importance of NASA sponsoring york in the area. Use 1 to denote that you

believe it is extremely important for NASA to sponsor work in the area, and 8 to

denote that you believe HASA should not sponsor any work in the area.

___ Theoretical research (for example, developing theorem provers)

___ Applied research (for example, pilot projects applying formal methods)

___ Joint projects between traditional engineering groups and formal methods experts

___ Workshop8 such as this one

Qnestlon 29: IndustrYo I 2 3 4 ,5 1]_. .
'l'i.'ort_tical Research 0 8 5 7 3 ,5

Applied R,_search 0 19 6 0 0 3

Johlt Projects 0 :2:1 2 2 I 0 |1.3 11.3

Workshops 0 17 7 2 2 0/1.6 [

Q,m_stlon 29: Gl_vernment

............... 0. 4
J'l'heoretical Research 0 3

IApl,lied lteseardl 0 10

[Joint Project.s 0 9

[Workshops 0 II

:t 3 4 5[.Avg
5 I 4 0

1 1 0 1 [ 1.5

"} 0 1 0 [ !.5

1 0 0 1 I 1.4

Que.stion 20- University ]

0 l :2 3 4 5 I Avg; l
Theoretical Research 0 0 1 I 0 0 I' "2"5 I
Applied Research 0 2 0 0 0 0 I ].0 j

Joint Projects 0 1 1 0 0 0 I 1.5 IWorkshops 0 1 ! 0 0 0 1.5

Theoretical Research 0 4 2 2 l 0

Applied Research 0 5 4 0 0 0

Joint Projects 0 5 4 0 0 0[ 1:4 [

Workshoi>s 0 2 d 2 1 0 ] 2.2 I

Nolei See the notes for Question 24.
..... -: z4- _ ; :

Questions 30-32 were not multiple choice. Only a few representative comments from each organizational

category are included below. 'l'he._ comments are presented exactly as given; no editing has been done. For

these questions, Government and University participants haw' been grouped together.

30. Want formal methods have you used?

Industry: Boyer-Moore, cleanroom, Clio, EIII)M, IIO1,, Spectool, teml_,>ral logic, VDM, Z

Gov £_ Univ: Boyer-Moore, cleanroom, DDD, EIII)M, llOl,, VDM
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FM Developers: Boyer-Moore, Clio, EHDM, EVES, HOL, PVS, Penelope, SDVS, Spectoo], temporal

logic, Z

31. In chat applications and parts of the life-cycle have you used forual methods?

Industry: requirements modeling, design, and testing, conceptual study, detailed design, verification of

algorithms, implementation

Gov £_ Unlv: software requirements, high level requirements, avionics software, missile systems, electronic

message systems, design, implementation, academic research projects

FM Developers: hardware designs, microcode, detailed design, algorithms, high-level HW design

32. Any additional comments?

Industry:

• ''Workshops of this type where interested industries can attend and participate are

excellent opportunities for technology transfer. I gould encourage IASA to continue

this type of interaction. ' '

• ''I gould very much like to see a survey of (1) methods (2) languages & (3) tools

presenting PROs & C0lis of each. As a novice ganting to enter the field, ghere do

I start?' '

• ''Tools are very important to this effort. Paper and pencil will not spread to industry. ''

• ' 'It would have been nice to actually solve some simple problems using a formal technique

rather than seeing lots of talks about proofs. ''

• ' 'Suitable applications of FMs was not elaborated on. I still cannot say 'where'

one should apply 'what ' FM. ' '

• "Mood to separate Rt/ FM's from St/ FN's.''

• ' 'This is one of the only forums I have attended that has had equal representation

from the software and hardware cozuaunity sharing roughly e_ual concerns and a common

interest in a technology of equal value and benefit to each community. ''

• ' 'You are overcautious about overselling .... ''

Gov £_ Univ:

• ''We must find a way to better find errors in Reqm'ts''

• ''It is important for NASA to take a leadership position in Formal Methods for civilian

aerospace applications. ' '

• ''FM appears to be currently the most feasible means of adding rigor and consistency

to the software development process.' '

• ' 'Keep holding this workshop! ' '

• ''I really wish copies of slides had been available at the conference. It would greatly

simplify notetaklng. ''

FM Developers:

• ''There is no 'royal road' to FH for industry."

• ''FM is powerful for educating designers.''

• ' 'Formal methods are no panacea''
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